×

An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. (English) Zbl 1082.65562

Summary: The aim of the present analysis is to apply the Adomian decomposition method to the solution of a nonlinear fractional differential equation. Finally, the solution obtained by the decomposition method has been numerically evaluated and presented in the form of tables and then compared with those obtained by truncated series method. A good agreement of the results is observed.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic Press: Academic Press New York, NY · Zbl 0614.35013
[2] Adomian, G.; Rach, R., On linear and nonlinear integro-differential equations, J. Math. Anal. Appl., 133, 199-201 (1986) · Zbl 0601.45009
[3] Adomian, G., Nonlinear Stochastic Systems Theory and Applications to Physics (1989), Kluwer Academic Publishers: Kluwer Academic Publishers Netherlands · Zbl 0659.93003
[4] Adomian, G.; Rach, R., Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Comput. Math. Appl., 10, 12, 9-12 (1990) · Zbl 0702.35058
[5] Adomian, G., An analytical solution of the stochastic Navier-Stokes system, Found. Phys., 21, 7, 831-843 (1991)
[6] Adomian, G.; Rach, R., Linear and nonlinear Schrödinger equations, Found. Phys., 21, 983-991 (1991)
[7] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0802.65122
[8] Adomian, G., Solution of physical problems by decomposition, Comput. Math. Appl., 27, 9-10, 145-154 (1994) · Zbl 0803.35020
[9] Adomian, G., Solutions of nonlinear P.D.E., Appl. Math. Lett., 11, 3, 121-123 (1998) · Zbl 0933.65121
[10] Abbaoui, K.; Cherruault, Y., The decomposition method applied to the Cauchy problem, Kybernetes, 28, 103-108 (1999) · Zbl 0937.65074
[11] Kaya, D.; El-Sayed, S. M., On a generalized fifth order KdV equations, Phys. Lett. A, 310, 1, 44-51 (2003) · Zbl 1011.35114
[12] Kaya, D.; El-Sayed, S. M., An application of the decomposition method for the generalized KdV and RLW equations, Chaos, Solitons & Fractals, 17, 5, 869-877 (2003) · Zbl 1030.35139
[13] Kaya, D., An explicit and numerical solutions of some fifth-order KdV equation by decomposition method, Appl. Math. Comput., 144, 2-3, 353-363 (2003) · Zbl 1024.65096
[14] Kaya, D., A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl. Math. Comput., 149, 3, 833-841 (2004) · Zbl 1038.65101
[15] Wazwaz, A., A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, 1, 77-86 (1999) · Zbl 0928.65083
[16] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[17] Bagley, R. L.; Torvik, P. J., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, 294-298 (1984) · Zbl 1203.74022
[18] Caputo, M., Elasticità e Dissipazione (1969), Zanichelli: Zanichelli Bologna
[19] Suarez, L. E.; Shokooh, A., An eigenvector expansion method for the solution of motion containing fractional derivatives, ASME J. Appl. Mech., 64, 629-635 (1997) · Zbl 0905.73022
[20] Ochmann, M.; Makarov, S., Representation of the absorption of nonlinear waves by fractional derivatives, J. Acoust. Soc. Am., 94, 6 (1993)
[21] M.W. Michalski, Derivatives of non integer order and their applications, Dissertationes Mathematical (Habilitationsschrift), Polska Akademia Nauk, Instytut Matematyczuy Warszawa, 1993.; M.W. Michalski, Derivatives of non integer order and their applications, Dissertationes Mathematical (Habilitationsschrift), Polska Akademia Nauk, Instytut Matematyczuy Warszawa, 1993. · Zbl 0880.26007
[22] Glockle, W. G.; Nonnenmacher, T. F., Fractional integral operators and Foxfunctions in the theory of viscoelasticity, Macromolecules, 24, 6424-6434 (1991)
[23] Y. Babenko, Non integer differential equation, Conference Bordeaux 3-8 July (1994a).; Y. Babenko, Non integer differential equation, Conference Bordeaux 3-8 July (1994a).
[24] Y. Babenko, Non integer differential equation in Engineering: Chemical Engineering, Conference Bordeaux 3-8 July (1994b).; Y. Babenko, Non integer differential equation in Engineering: Chemical Engineering, Conference Bordeaux 3-8 July (1994b).
[25] F. Mainardi, Fractional relaxation and fractional diffusion equations: mathematical aspects, in: Proceedings of the 14th IMACS World Congress, vol. 1, 1994. pp. 329-332.; F. Mainardi, Fractional relaxation and fractional diffusion equations: mathematical aspects, in: Proceedings of the 14th IMACS World Congress, vol. 1, 1994. pp. 329-332.
[26] Gaul, L.; Klein, P.; Kempfle, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88 (1991)
[27] Diethelm, K.; Ford, A. D., On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, (Keil, F.; Mackens, W.; Voß, H.; Werther, J., Scientific Computing in Chemical Engineering II. Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties (1999), Springer-Verlag: Springer-Verlag Heidelberg), 217-224
[28] K. Diethelm, N.J. Ford, The numerical solution of linear and nonlinear fractional differential equations involving fractional derivatives of several orders, Numerical Analysis Report 379, Manchester Centre for Computational Mathematics, 2001.; K. Diethelm, N.J. Ford, The numerical solution of linear and nonlinear fractional differential equations involving fractional derivatives of several orders, Numerical Analysis Report 379, Manchester Centre for Computational Mathematics, 2001.
[29] George, A. J.; Chakrabarti, A., The Adomian method applied to some Extraordinary differential equations, Appl. Math. Lett., 8, 3, 91-97 (1995) · Zbl 0828.65081
[30] Arora, H. L.; Abdelwahid, F. I., Solutions of non-integer order differential equations via the Adomian decomposition method, Appl. Math. Lett., 6, 1, 21-23 (1993) · Zbl 0772.34009
[31] Shawagfeh, N. T., The decompostion method for fractional differential equations, J. Frac. Calc., 16, 27-33 (1999) · Zbl 0956.34004
[32] Shawagfeh, N. T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131, 517-529 (2002) · Zbl 1029.34003
[33] S. Saha Ray, R.K. Bera, Solution of an extraordinary differential equation by Adomian decomposition method, J. Appl. Math., in press.; S. Saha Ray, R.K. Bera, Solution of an extraordinary differential equation by Adomian decomposition method, J. Appl. Math., in press. · Zbl 1080.65069
[34] S. Saha Ray, R.K. Bera, Analytical solution of a dynamic system containing fractional derivative of order 1/2 by Adomian Decomposition Method, ASME J. Appl. Mech., in press.; S. Saha Ray, R.K. Bera, Analytical solution of a dynamic system containing fractional derivative of order 1/2 by Adomian Decomposition Method, ASME J. Appl. Mech., in press. · Zbl 1108.65129
[35] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[36] Abdelwahid, F., A mathematical model of Adomian polynomials, Appl. Math. Comput., 141, 447-453 (2003) · Zbl 1027.65072
[37] Cherruault, Y., Convergence of Adomian’s method, Kybernetes, 18, 31-38 (1989) · Zbl 0697.65051
[38] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to differential equations, Comput. Math. Appl., 28, 103-109 (1994) · Zbl 0809.65073
[39] Abbaoui, K.; Cherruault, Y., New Ideas for proving convergence of decomposition methods, Comput. Math. Appl., 29, 103-108 (1995) · Zbl 0832.47051
[40] Himoun, N.; Abbaoui, K.; Cherruault, Y., New results of convergence of Adomian’s method, Kybernetes, 28, 4-5, 423-429 (1999) · Zbl 0938.93019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.