×

Anomalous diffusion with ballistic scaling: a new fractional derivative. (English) Zbl 1538.35432

Summary: Anomalous diffusion with ballistic scaling is characterized by a linear spreading rate with respect to time that scales like pure advection. Ballistic scaling may be modeled with a symmetric Riesz derivative if the spreading is symmetric. However, ballistic scaling coupled with a skewness is observed in many applications, including hydrology, nuclear physics, viscoelasticity, and acoustics. The goal of this paper is to find a governing equation for anomalous diffusion with ballistic scaling and arbitrary skewness. To address this problem, we propose a new operator called the Zolotarev derivative, which is valid for all orders \(0 < \alpha \leq 2\). The Fourier symbol of this operator is related to the characteristic function of a stable random variable in the Zolotarev \(M\) parameterization. In the symmetric case, the Zolotarev derivative reduces to the well-known Riesz derivative. For \(\alpha \neq 1\), the Zolotarev derivative is a linear combination of Riemann-Liouville fractional derivatives and a first derivative. For \(\alpha = 1\), the Zolotarev derivative is a non-local operator that models ballistic anomalous diffusion. We prove that this operator is continuous with respect to \(\alpha\). We derive generator, Caputo, and Riemann-Liouville forms of this operator and provide two examples. The solutions of diffusion equations utilizing the Zolotarev derivative with an impulse initial condition are shifted and scaled stable densities in the \(M\) parameterization.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

Software:

STABLE
Full Text: DOI

References:

[1] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[2] Chaves, A., A fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 1, 13-16 (1998) · Zbl 1026.82524
[3] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 6, 1413-1423 (2000)
[4] Zaburdaev, V.; Denisov, S.; Klafter, J., Lévy walks, Rev. Modern Phys., 87, 2, 483 (2015)
[5] Clark, J. F.; Schlosser, P.; Stute, M.; Simpson, H. J., SF6- 3He tracer release experiment: A new method of determining longitudinal dispersion coefficients in large rivers, Environ. Sci. Technol., 30, 5, 1527-1532 (1996)
[6] Kolsky, H., The propagation of stress pulses in viscoelastic solids, Phil. Mag., 1, 8, 693-710 (1956)
[7] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Gordon and Breach: Gordon and Breach London · Zbl 0818.26003
[8] Meerschaert, M. M., Fractional calculus, anomalous diffusion, and probability, Fract. Dyn., 265-284 (2012) · Zbl 1297.35276
[9] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus (2012), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1247.60003
[10] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 6, 23-28 (1996) · Zbl 0879.35036
[11] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 2, 153-192 (2001) · Zbl 1054.35156
[12] Meerschaert, M. M.; Straka, P., Inverse stable subordinators, Math. Model. Nat. Phenom., 8, 2, 1-16 (2013) · Zbl 1274.60153
[13] Landau, L. D., On the energy loss of fast particles by ionisation, J. Phys. U.S.S.R., 8, 201-208 (1944), (Russian)
[14] Uchaikin, V.; Topchii, V., Stable law with index \(\alpha = 1\) in the problem of fluctuations of ionization losses of charged particles, Russian Phys. J., 21, 4, 459-462 (1978)
[15] Kreis, A.; Pipkin, A. C., Viscoelastic pulse propagation and stable probability distributions, Quart. J. Appl. Math., 44, 2, 353-360 (1986) · Zbl 0625.73037
[16] Mainardi, F.; Tomirotti, M., Seismic pulse propagation with constant \(Q\) and stable probability distributions, Annali di Geofisica, 40, 11, 1311-1328 (1997)
[17] Collins, M. D., The time-domain solution of the wide-angle parabolic equation including the effects of sediment dispersion, J. Acoust. Soc. Am., 84, 6, 2114-2125 (1988)
[18] Szabo, T. L., Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Am., 96, 1, 491-500 (1994)
[19] Chen, W.; Holm, S., Modified Szabo’s wave equation models for lossy media obeying frequency power law, J. Acoust. Soc. Am., 114, 5, 2570-2574 (2003)
[20] Kelly, J. F.; McGough, R. J.; Meerschaert, M. M., Analytical time-domain Green’s functions for power-law media, J. Acoust. Soc. Am., 124, 5, 2861-2872 (2008)
[21] D’Astous, F. T.; Foster, F. S., Frequency dependence of ultrasound attenuation and backscatter in breast tissue, J. Acoust. Soc. Am., 12, 10, 795-808 (1986)
[22] Duck, F. A., Physical Properties of Tissue, 99-124 (1990), Academic Press: Academic Press London
[23] V.M. Zolotarev, One-Dimensional Stable Distributions, Vol. 65, Providence, RI, 1986.; V.M. Zolotarev, One-Dimensional Stable Distributions, Vol. 65, Providence, RI, 1986. · Zbl 0589.60015
[24] Kelly, J. F.; Meerschaert, M. M., Space-time duality for the fractional advection dispersion equation, Water Resour. Res., 53, 4, 3464-3475 (2017)
[25] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204 (2006), Elsevier Science Limited: Elsevier Science Limited Amsterdam · Zbl 1092.45003
[26] Samoradnitsky, G.; Taqqu, M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Vol. 1 (1994), CRC Press · Zbl 0925.60027
[27] Nolan, J. P., Numerical calculation of stable densities and distribution functions, Commun. Stat. Stoch. Models, 13, 4, 759-774 (1997) · Zbl 0899.60012
[28] Cushman-Roisin, B., Beyond eddy diffusivity: an alternative model for turbulent dispersion, Environ. Fluid Mech., 8, 5-6, 543-549 (2008)
[29] Nolan, J. P., Parameterizations and modes of stable distributions, Statist. Probab. Lett., 38, 2, 187-195 (1998) · Zbl 1246.60028
[30] Uchaikin, V. V.; Zolotarev, V. M., Chance and Stability: Stable Distributions and their Applications (1999), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0944.60006
[31] Meerschaert, M. M.; Scheffler, H.-P., Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, Vol. 321 (2001), John Wiley & Sons · Zbl 0990.60003
[32] Umarov, S., Introduction To Fractional and Pseudo-Differential Equations with Singular Symbols (2015), Springer: Springer Heidelberg · Zbl 1331.35005
[33] Samko, S. G., Hypersingular Integrals and their Applications (2002), Taylor and Francis: Taylor and Francis London · Zbl 0998.42010
[34] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023
[35] Herrmann, R., Fractional Calculus: An Introduction for Physicists (2014), World Scientific: World Scientific Hackensack, NJ · Zbl 1293.26001
[36] F.W. King, Hilbert Transforms: Volume 1, Cambridge University Press, Cambridge.; F.W. King, Hilbert Transforms: Volume 1, Cambridge University Press, Cambridge.
[37] Butzer, P. L.; Trebels, W., Hilbert transforms, fractional integration and differentiation, Bull. Amer. Math. Soc., 74, 106-110 (1968) · Zbl 0171.10204
[38] Richards, I.; Youn, H., Theory of Distributions: A Non-Technical Introduction (1990), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0697.46014
[39] Hille, E.; Phillips, R. S., Functional Analysis and Semi-Groups (1957), American Mathematical Society, Providence, RI · Zbl 0078.10004
[40] Feller, W., An Introduction To Probability Theory and Its Applications, Vol. 2 (1971), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0219.60003
[41] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13, 529-539 (1967)
[42] Zhang, Y.; Meerschaert, M. M.; Neupauer, R. M., Backward fractional advection dipsersion model for contaminant source prediction, Water Resour. Res., 42, 2462-2473 (2016)
[43] Maryshev, B.; Cartalade, A.; Latrille, C.; Joelson, M.; Neel, M.-C., Adjoint state method for fractional diffusion: Parameter identification, Comput. Math. Appl., 66, 5, 630-638 (2013) · Zbl 1346.35218
[44] Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press · Zbl 0973.60001
[45] Benson, D. M.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S. W., Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240 (2001)
[46] Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. A.; Packman, A. I., Fracfit: A robust parameter estimation tool for fractional calculus models, Water Resour. Res., 53, 3, 2559-2567 (2017)
[47] Meerschaert, M. M.; Straka, P.; Zhou, Y.; McGough, R. J., Stochastic solution to a time-fractional attenuated wave equation, Nonlinear Dynam., 70, 2, 1273-1281 (2012)
[48] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346
[49] Zayernouri, M.; Karniadakis, G. E., Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys., 252, 495-517 (2013) · Zbl 1349.34095
[50] Zayernouri, M.; Karniadakis, G. E., Discontinuous spectral element methods for time-and space-fractional advection equations, SIAM J. Sci. Comput., 36, 4, B684-B707 (2014) · Zbl 1304.35757
[51] Lynch, V. E.; Carreras, B. A.; del Castillo-Negrete, D.; Ferreira-Mejias, K.; Hicks, H., Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192, 2, 406-421 (2003) · Zbl 1047.76075
[52] Momani, S.; Odibat, Z., Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207, 1, 96-110 (2007) · Zbl 1119.65127
[53] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity (2010), Imperial College Press: Imperial College Press London · Zbl 1210.26004
[54] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Baeumer, B., Fractal mobile/immobile solute transport, Water Resour. Res., 39, 10, 1296-1307 (2003)
[55] Smith, M. G., Laplace Transform Theory (1966), D. Van Nostrand Co. Ltd.: D. Van Nostrand Co. Ltd. London · Zbl 0137.08801
[56] Gel’fand, I.; Shilov, G., Generalized Functions: Volume 1 (1964), Academic: Academic New York · Zbl 0115.33101
[57] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55 (1964) · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.