×

Adjoint state method for fractional diffusion: parameter identification. (English) Zbl 1346.35218

Summary: Fractional partial differential equations provide models for sub-diffusion, among which the fractal Mobile-Immobile Model (fMIM) is often used to represent solute transport in complex media. The fMIM involves four parameters, among which we have the order of an integro-differential operator that accounts for the possibility for solutes to be sequestered during very long times. To guess fMIM parameters from experiments, an accurate method consists in optimizing an objective function that measures how much model solutions deviate from data. We show that solving an adjoint problem helps accurate computing of the gradient of such an objective function, with respect to the parameters. We illustrate the method by applying it on experimental data issued from tracing tests in porous media.

MSC:

35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Meerschaert, M. M.; Scheffler, H. P., J. Appl. Probab., 41, 2, 455 (2004) · Zbl 1050.60038
[2] Metzler, R.; Klafter, J., Phys. Rep., 339, 1 (2000) · Zbl 0984.82032
[3] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Bauemer, B., Water Resour. Res., 39, 10, 1296 (2003)
[4] Benson, D. A.; Meerschaert, M. M., Adv. Water Resour., 32, 532 (2009)
[5] Zhang, Y.; Benson, D. A.; Bauemer, B., Water Resour. Res., 44, W04424 (2008)
[6] Van Genuchten, M. T.; Wierenga, P. J., Soil Sci. Soc. Am. J., 40, 4, 473 (1976)
[7] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York · Zbl 0818.26003
[8] Gorenflo, R.; Mainardi, F.; Vivoli, A., Chaos Solitons Fractals, 34, 87 (2007) · Zbl 1142.82363
[9] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y., Comput. Methods Appl. Mech. Engrg., 194, 543 (2005)
[10] Maryshev, B.; Joelson, M.; Lyubimov, D.; Lyubimova, T.; Néel, M. C., J. Phys. A: Math. Theor., 42, 115001 (2009) · Zbl 1180.82159
[11] Zoia, A.; Néel, M. C.; Cortis, A., Phys. Rev. E, 81, 031104 (2010)
[12] Chavent, G., (Non Linear Least Squares for Inverse Problems. Non Linear Least Squares for Inverse Problems, Scientific Computation (2009), Springer: Springer Dordrecht, Heidelberg, London, New York) · Zbl 1191.65062
[13] Sabatier, J.; Aoun, M.; Oustaloup, A.; Grégoire, G.; Ragot, F.; Roy, P., Signal Process., 86, 2645-2657 (2006) · Zbl 1172.93399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.