×

Fractional advection diffusion asymmetry equation, derivation, solution and application. (English) Zbl 1534.60161

Summary: The non-Markovian continuous-time random walk model, featuring fat-tailed waiting times and narrow distributed displacements with a non-zero mean, is a well studied model for anomalous diffusion. Using an analytical approach, we recently demonstrated how a fractional space advection diffusion asymmetry equation, usually associated with Markovian Lévy flights, describes the spreading of a packet of particles. Since we use Gaussian statistics for jump lengths though fat-tailed distribution of waiting times, the appearance of fractional space derivatives in the kinetic equation demands explanations provided in this manuscript. As applications we analyse the spreading of tracers in two dimensions, breakthrough curves investigated in the field of contamination spreading in hydrology and first passage time statistics. We present a subordination scheme valid for the case when the mean waiting time is finite and the variance diverges, which is related to Lévy statistics for the number of renewals in the process.
{© 2024 IOP Publishing Ltd}

MSC:

60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
60K40 Other physical applications of random processes
35R11 Fractional partial differential equations
60G51 Processes with independent increments; Lévy processes
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

Software:

FODE

References:

[1] Shlesinger, M. F., Asymptotic solutions of continuous-time random walks, J. Stat. Phys., 10, 421-34 (1974) · doi:10.1007/BF01008803
[2] Montroll, E. W.; Weiss, G. H., Random walks on lattices. II, J. Math. Phys., 6, 167-81 (1965) · Zbl 1342.60067 · doi:10.1063/1.1704269
[3] Bouchaud, J-P; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990) · doi:10.1016/0370-1573(90)90099-N
[4] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[5] Chaudhuri, P.; Berthier, L.; Kob, W., Universal nature of particle displacements close to glass and jamming transitions, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.060604
[6] Weigel, A. V.; Simon, B.; Tamkun, M. M.; Krapf, D., Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking, Proc. Natl Acad. Sci., 108, 6438-43 (2011) · doi:10.1073/pnas.1016325108
[7] Meroz, Y.; Sokolov, I. M., A toolbox for determining subdiffusive mechanisms, Phys. Rep., 573, 1-29 (2015) · doi:10.1016/j.physrep.2015.01.002
[8] Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys., 76 (2013) · doi:10.1088/0034-4885/76/4/046602
[9] Gradenigo, G.; Bertin, E.; Biroli, G., Field-induced superdiffusion and dynamical heterogeneity, Phys. Rev. E, 93 (2016) · doi:10.1103/PhysRevE.93.060105
[10] Kutner, R.; Masoliver, J., The continuous time random walk, still trendy: fifty-year history, state of art and outlook, Eur. Phys. J. B, 90, 50 (2017) · doi:10.1140/epjb/e2016-70578-3
[11] Comolli, A.; Dentz, M., Impact of diffusive motion on anomalous dispersion in structured disordered media: from correlated Lévy flights to continuous time random walks, Phys. Rev. E, 97 (2018) · doi:10.1103/PhysRevE.97.052146
[12] Barkai, E.; Burov, S., Packets of diffusing particles exhibit universal exponential tails, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.060603
[13] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Biased continuous-time random walks with Mittag-Leffler jumps, Fractal Fract., 4, 51 (2020) · doi:10.3390/fractalfract4040051
[14] Vot, F. L.; Abad, E.; Metzler, R.; Yuste, S. B., Continuous time random walk in a velocity field: role of domain growth, Galilei-invariant advection-diffusion and kinetics of particle mixing, New J. Phys., 22 (2020) · doi:10.1088/1367-2630/ab9ae2
[15] Wang, W.; Barkai, E.; Burov, S., Large deviations for continuous time random walks, Entropy, 22, 697 (2020) · doi:10.3390/e22060697
[16] Pacheco-Pozo, A.; Sokolov, I. M., Large deviations in continuous-time random walks, Phys. Rev. E, 103 (2021) · doi:10.1103/PhysRevE.103.042116
[17] Liu, J.; Zhu, P.; Bao, J-D; Chen, X., Strong anomalous diffusive behaviors of the two-state random walk process, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.014122
[18] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Asymmetric random walks with bias generated by discrete-time counting processes, Commun. Nonlinear Sci. Numer. Simul., 109 (2022) · Zbl 1535.60077 · doi:10.1016/j.cnsns.2021.106121
[19] Burov, S.; Wang, W.; Barkai, E., Exponential tails and asymmetry relations for the spread of biased random walks (2022)
[20] Vitali, S.; Paradisi, P.; Pagnini, G., Anomalous diffusion originated by two markovian hopping-trap mechanisms, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1506.60111 · doi:10.1088/1751-8121/ac677f
[21] Dentz, M.; Kirchner, J. W.; Zehe, E.; Berkowitz, B., The role of anomalous transport in long-term, stream water chemistry variability, Geophys. Res. Lett., 50 (2023) · doi:10.1029/2023GL104207
[22] Afek, G.; Davidson, N.; Kessler, D. A.; Barkai, E., Colloquium: anomalous statistics of laser-cooled atoms in dissipative optical lattices, Rev. Mod. Phys., 95 (2023) · doi:10.1103/RevModPhys.95.031003
[23] Scher, H.; Montroll, E. W., Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455-77 (1975) · doi:10.1103/PhysRevB.12.2455
[24] David, S. A.; Valentim, C. A.; Debbouche, A., Fractional modeling applied to the dynamics of the action potential in cardiac tissue, Fractal Fract., 6, 149 (2022) · doi:10.3390/fractalfract6030149
[25] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-26 (2009) · Zbl 1416.65344 · doi:10.1137/080714130
[26] Sylvain, T. T A.; Patrice, E. A.; Marie, E. E J.; Pierre, O. A.; Hubert, B. B G., A unified three-dimensional extended fractional analytical solution for air pollutants dispersion, Fractals, 30 (2022) · Zbl 1491.35439 · doi:10.1142/S0218348X22500657
[27] Suleiman, K.; Song, Q.; Zhang, X.; Liu, S.; Zheng, L., Anomalous diffusion in a circular comb with external velocity field, Chaos Solitons Fractals, 155 (2022) · Zbl 1498.35337 · doi:10.1016/j.chaos.2021.111742
[28] Yan, Z., New integrable multi-Lévy-index and mixed fractional nonlinear soliton hierarchies, Chaos Solitons Fractals, 164 (2022) · Zbl 1508.35205 · doi:10.1016/j.chaos.2022.112758
[29] Evangelista, L. R.; Lenzi, E. K., Fractional Anomalous Diffusion, pp 189-236 (2023), Springer International Publishing
[30] Tang, Y.; Gharari, F.; Arias-Calluari, K.; Alonso-Marroquin, F.; Najafi, M. N., Variable order porous media equations: Application on modeling the S&P500 and bitcoin price return (2023)
[31] Uchaikin, V.; Sibatov, R., Fractional Kinetics in Solids (2013), World Scientific · Zbl 1277.82006
[32] Eraso-Hernandez, L.; Riascos, A.; Michelitsch, T.; Wang-Michelitsch, J., Random walks on networks with preferential cumulative damage: generation of bias and aging, J. Stat. Mech: Theory Exp., 2021 (2021) · Zbl 1539.82312 · doi:10.1088/1742-5468/abfcb5
[33] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82, 3563-7 (1999) · doi:10.1103/PhysRevLett.82.3563
[34] Barkai, E., Fractional Fokker-Planck equation, solution and application, Phys. Rev. E, 63 (2001) · doi:10.1103/PhysRevE.63.046118
[35] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic · Zbl 0428.26004
[36] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-23 (2000) · doi:10.1029/2000WR900032
[37] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Gordon and Breach Science Publishers · Zbl 0818.26003
[38] Podlubny, I., Fractional Differential Equations (1999), Academic, Inc. · Zbl 0918.34010
[39] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus (De Gruyter Studies in Mathematics), vol 43 (2012), Walter de Gruyter & Co. · Zbl 1247.60003
[40] Kessler, D. A.; Barkai, E., Theory of fractional Lévy kinetics for cold atoms diffusing in optical lattices, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.230602
[41] Estrada-Rodriguez, G.; Gimperlein, H.; Painter, K. J.; Stocek, J., Space-time fractional diffusion in cell movement models with delay, Math. Models Methods Appl. Sci., 29, 65-88 (2019) · Zbl 1411.92036 · doi:10.1142/S0218202519500039
[42] Zheng, X.; Wang, H., An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58, 2492-514 (2020) · Zbl 1450.65135 · doi:10.1137/20M132420X
[43] Hufnagel, L.; Brockmann, D.; Geisel, T., Forecast and control of epidemics in a globalized world, Proc. Natl Acad. Sci., 101, 15124-9 (2004) · doi:10.1073/pnas.0308344101
[44] Lomholt, M. A.; Ambjörnsson, T.; Metzler, R., Optimal target search on a fast-folding polymer chain with volume exchange, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.260603
[45] Brockmann, D.; Hufnagel, L.; Geisel, T., The scaling laws of human travel, Nature, 439, 462-5 (2006) · doi:10.1038/nature04292
[46] Benson, D. A.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S. W., Fractional dispersion, Lévy motion and the MADE tracer tests, Transp. Porous Media, 42, 211-40 (2001) · doi:10.1023/A:1006733002131
[47] Zaburdaev, V.; Denisov, S.; Klafter, J., Lévy walks, Rev. Mod. Phys., 87, 483-530 (2015) · doi:10.1103/RevModPhys.87.483
[48] Zhang, Y.; Meerschaert, M. M.; Neupauer, R. M., Backward fractional advection dispersion model for contaminant source prediction, Water Resour. Res., 52, 2462-73 (2016) · doi:10.1002/2015WR018515
[49] Guo, Y.; Wang, L., Heat current flows across an interface in two-dimensional lattices, Phys. Rev. E, 103 (2021) · doi:10.1103/PhysRevE.103.052141
[50] Sin, C-S, Cauchy problem for fractional advection-diffusion-asymmetry equations, Results Math., 78, 111 (2023) · Zbl 1512.35634 · doi:10.1007/s00025-023-01886-7
[51] Saichev, A. I.; Zaslavsky, G. M., Fractional kinetic equations: solutions and applications, Chaos, 7, 753-64 (1997) · Zbl 0933.37029 · doi:10.1063/1.166272
[52] Gorenflo, R.; Mainardi, F.; Vivoli, A., Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34, 87-103 (2007) · Zbl 1142.82363 · doi:10.1016/j.chaos.2007.01.052
[53] Weron, K.; Jurlewicz, A.; Magdziarz, M.; Weron, A.; Trzmiel, J., Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses, Phys. Rev. E, 81 (2010) · doi:10.1103/PhysRevE.81.041123
[54] Dybiec, B.; Gudowska-Nowak, E., Subordinated diffusion and continuous time random walk asymptotics, Chaos, 20 (2010) · Zbl 1311.82037 · doi:10.1063/1.3522761
[55] Wang, W.; Barkai, E., Fractional advection-diffusion-asymmetry equation, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.240606
[56] Chechkin, A.; Sokolov, I. M., Relation between generalized diffusion equations and subordination schemes, Phys. Rev. E, 103 (2021) · doi:10.1103/PhysRevE.103.032133
[57] Zhou, T.; Trajanovski, P.; Xu, P.; Deng, W.; Sandev, T.; Kocarev, L., Generalized diffusion and random search processes, J. Stat. Mech.: Theory Exp., 2022 (2022) · Zbl 1539.82323 · doi:10.1088/1742-5468/ac841e
[58] Wang, X.; Chen, Y., Ergodic property of random diffusivity system with trapping events, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.014106
[59] Defaveri, L.; dos Santos, M. A F.; Kessler, D. A.; Barkai, E.; Anteneodo, C., Non-normalizable quasiequilibrium states under fractional dynamics, Phys. Rev. E, 108 (2023) · doi:10.1103/PhysRevE.108.024133
[60] Berkowitz, B.; Klafter, J.; Metzler, R.; Scher, H., Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk and fractional derivative formulations, Water Resour. Res., 38, 9 (2002) · doi:10.1029/2001WR001030
[61] Godrèche, C.; Luck, J. M., Statistics of the occupation time of renewal processes, J. Stat. Phys., 104, 489-524 (2001) · Zbl 0985.60094 · doi:10.1023/A:1010364003250
[62] Wang, W.; Schulz, J. H P.; Deng, W. H.; Barkai, E., Renewal theory with fat-tailed distributed sojourn times: typical versus rare, Phys. Rev. E, 98 (2018) · doi:10.1103/PhysRevE.98.042139
[63] Metzler, R.; Jeon, J-H; Cherstvy, A. G.; Barkai, E., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 24128-64 (2014) · doi:10.1039/c4cp03465a
[64] Margolin, G.; Berkowitz, B., Spatial behavior of anomalous transport, Phys. Rev. E, 65 (2002) · doi:10.1103/PhysRevE.65.031101
[65] Levy, M.; Berkowitz, B., Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol., 64, 203-26 (2003) · doi:10.1016/S0169-7722(02)00204-8
[66] Schroer, C. F E.; Heuer, A., Anomalous diffusion of driven particles in supercooled liquids, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.067801
[67] Luo, L.; Tang, L-H, Sample-dependent first-passage-time distribution in a disordered medium, Phys. Rev. E, 92 (2015) · doi:10.1103/PhysRevE.92.042137
[68] Nissan, A.; Dror, I.; Berkowitz, B., Time-dependent velocity-field controls on anomalous chemical transport in porous media, Water Resour. Res., 53, 3760-9 (2017) · doi:10.1002/2016WR020143
[69] Vezzani, A.; Barkai, E.; Burioni, R., Single-big-jump principle in physical modeling, Phys. Rev. E, 100 (2019) · doi:10.1103/PhysRevE.100.012108
[70] Wang, W.; Vezzani, A.; Burioni, R.; Barkai, E., Transport in disordered systems: the single big jump approach, Phys. Rev. Res., 1 (2019) · doi:10.1103/PhysRevResearch.1.033172
[71] Zhang, C.; Hu, Y.; Liu, J., Correlated continuous-time random walk with stochastic resetting, J. Stat. Mech: Theory Exp., 2022 (2022) · Zbl 1539.82322 · doi:10.1088/1742-5468/ac8c8e
[72] Fogedby, H. C., Langevin equations for continuous time Lévy flights, Phys. Rev. E, 50, 1657-60 (1994) · doi:10.1103/PhysRevE.50.1657
[73] Magdziarz, M.; Weron, A.; Weron, K., Fractional Fokker-Planck dynamics: stochastic representation and computer simulation, Phys. Rev. E, 75 (2007) · Zbl 1123.60045 · doi:10.1103/PhysRevE.75.016708
[74] Fedotov, S.; Han, D., Population heterogeneity in the fractional master equation, ensemble self-reinforcement and strong memory effects, Phys. Rev. E, 107 (2023) · doi:10.1103/PhysRevE.107.034115
[75] Kotulski, M., Asymptotic distributions of continuous-time random walks: a probabilistic approach, J. Stat. Phys., 81, 777-92 (1995) · Zbl 1107.60318 · doi:10.1007/BF02179257
[76] Burioni, R.; Gradenigo, G.; Sarracino, A.; Vezzani, A.; Vulpiani, A., Rare events and scaling properties in field-induced anomalous dynamics, J. Stat. Mech. Theory Exp., 2013 (2013) · Zbl 1456.82830 · doi:10.1088/1742-5468/2013/09/P09022
[77] Metzler, R.; Barkai, E.; Klafter, J., Deriving fractional Fokker-Planck equations from a generalised master equation, Europhys. Lett., 46, 431-6 (1999) · doi:10.1209/epl/i1999-00279-7
[78] Deng, W.; Hou, R.; Wang, W.; Xu, P., Modeling Anomalous Diffusion: From Statistics to Mathematics (2020), World Scientific · Zbl 1453.35001
[79] Zhang, X.; Crawford, J. W.; Deeks, L. K.; Stutter, M. I.; Bengough, A. G.; Young, I. M., A mass balance based numerical method for the fractional advection-dispersion equation: theory and application, Water Resour. Res., 41 (2005) · doi:10.1029/2004WR003818
[80] Metzler, R.; Rajyaguru, A.; Berkowitz, B., Modelling anomalous diffusion in semi-infinite disordered systems and porous media, New J. Phys., 24 (2022) · doi:10.1088/1367-2630/aca70c
[81] Berkowitz, B.; Kosakowski, G.; Margolin, G.; Scher, H., Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media, Ground Water, 39, 593-604 (2001) · doi:10.1111/j.1745-6584.2001.tb02347.x
[82] Berkowitz, B.; Cortis, A.; Dentz, M.; Scher, H., Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44 (2006) · doi:10.1029/2005RG000178
[83] Berkowitz, B.; Scher, H., Exploring the nature of non-Fickian transport in laboratory experiments, Adv. Water Resour., 32, 750-5 (2009) · doi:10.1016/j.advwatres.2008.05.004
[84] Cortis, A.; Berkowitz, B., Anomalous transport in “Classical” soil and sand columns, Soil Sci. Soc. Am. J., 68, 1539-48 (2004) · doi:10.2136/sssaj2004.1539
[85] de Moraes, R.; Ozelim, L.; Cavalcante, A., Generalized skewed model for spatial-fractional advective-dispersive phenomena, Sustainability, 14, 4024 (2022) · doi:10.3390/su14074024
[86] Doerries, T. J.; Chechkin, A. V.; Schumer, R.; Metzler, R., Rate equations, spatial moments and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.014105
[87] Redner, S., A Guide to First-Passage Processes (2001), Cambridge University Press · Zbl 0980.60006
[88] Metzler, R.; Chechkin, A. V.; Klafter, J., Lévy Statistics and Anomalous Transport: Lévy Flights and Subdiffusion, pp 1724-45 (2012), Springer
[89] Wardak, A., First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.60048 · doi:10.1088/1751-8121/ab8b37
[90] Zan, W.; Xu, Y.; Metzler, R.; Kurths, J., First-passage problem for stochastic differential equations with combined parametric gaussian and Lévy white noises via path integral method, J. Comput. Phys., 435 (2021) · Zbl 07503736 · doi:10.1016/j.jcp.2021.110264
[91] Höll, M.; Nissan, A.; Berkowitz, B.; Barkai, E., Controls that expedite first-passage times in disordered systems, Phys. Rev. E, 108 (2023) · doi:10.1103/PhysRevE.108.034124
[92] Chechkin, A. V.; Metzler, R.; Gonchar, V. Y.; Klafter, J.; Tanatarov, L. V., First passage and arrival time densities for Lévy flights and the failure of the method of images, J. Phys. A: Math. Gen., 36, L537 (2003) · Zbl 1049.60090 · doi:10.1088/0305-4470/36/41/L01
[93] Sokolov, I. M.; Metzler, R., Non-uniqueness of the first passage time density of Lévy random processes, J. Phys. A: Math. Gen., 37, L609-15 (2004) · Zbl 1071.60033 · doi:10.1088/0305-4470/37/46/L02
[94] Palyulin, V. V.; Blackburn, G.; Lomholt, M. A.; Watkins, N. W.; Metzler, R.; Klages, R.; Chechkin, A. V., First passage and first hitting times of Lévy flights and Lévy walks, New J. Phys., 21 (2019) · doi:10.1088/1367-2630/ab41bb
[95] Padash, A.; Chechkin, A. V.; Dybiec, B.; Pavlyukevich, I.; Shokri, B.; Metzler, R., First-passage properties of asymmetric Lévy flights, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.60106 · doi:10.1088/1751-8121/ab493e
[96] Bénichou, O.; Bodrova, A.; Chakraborty, D.; Illien, P.; Law, A.; Mejía-Monasterio, C.; Oshanin, G.; Voituriez, R., Geometry-induced superdiffusion in driven crowded systems, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.260601
[97] Illien, P.; Bénichou, O.; Oshanin, G.; Sarracino, A.; Voituriez, R., Nonequilibrium fluctuations and enhanced diffusion of a driven particle in a dense environment, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.200606
[98] Evans, M. R.; Majumdar, S. N., Diffusion with stochastic resetting, Phys. Rev. Lett., 106 (2011) · Zbl 1465.60070 · doi:10.1103/PhysRevLett.106.160601
[99] Evans, M. R.; Majumdar, S. N.; Schehr, G., Stochastic resetting and applications, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[100] Evans, M. R.; Majumdar, S. N.; Schehr, G., An exactly solvable predator prey model with resetting, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1507.37121 · doi:10.1088/1751-8121/ac7269
[101] Trajanovski, P.; Jolakoski, P.; Zelenkovski, K.; Iomin, A.; Kocarev, L.; Sandev, T., Ornstein-uhlenbeck process and generalizations: particle dynamics under comb constraints and stochastic resetting, Phys. Rev. E, 107 (2023) · doi:10.1103/PhysRevE.107.054129
[102] Liu, J.; Hu, Y.; Bao, J-D, The Lévy walk with rests under stochastic resetting, J. Stat. Mech: Theory Exp., 2023 (2023) · Zbl 07914888 · doi:10.1088/1742-5468/ace3b1
[103] Barkai, E.; Flaquer-Galmés, R.; Méndez, V., Ergodic properties of brownian motion under stochastic resetting, Phys. Rev. E, 108 (2023) · doi:10.1103/PhysRevE.108.064102
[104] Sunil, J. C.; Blythe, R. A.; Evans, M. R.; Majumdar, S. N., The cost of stochastic resetting, J. Phys. A: Math. Theor., 56 (2023) · Zbl 1527.60061 · doi:10.1088/1751-8121/acf3bb
[105] Zhou, T.; Xu, P.; Deng, W., Continuous-time random walks and Lévy walks with stochastic resetting, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.013103
[106] Bodrova, A. S.; Sokolov, I. M., Continuous-time random walks under power-law resetting, Phys. Rev. E, 101 (2020) · doi:10.1103/PhysRevE.101.062117
[107] Kuśmierz, L.; Gudowska-Nowak, E., Subdiffusive continuous-time random walks with stochastic resetting, Phys. Rev. E, 99 (2019) · doi:10.1103/PhysRevE.99.052116
[108] Zbik, B.; Dybiec, B., Lévy flights and Lévy walks under stochastic resetting (2023)
[109] Sandev, T.; Iomin, A.; Méndez, V., Lévy processes on a generalized fractal comb, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1356.60076 · doi:10.1088/1751-8113/49/35/355001
[110] Havlin, S.; Kiefer, J. E.; Weiss, G. H., Anomalous diffusion on a random comblike structure, Phys. Rev. A, 36, 1403-8 (1987) · doi:10.1103/PhysRevA.36.1403
[111] Iomin, A.; Méndez, V.; Horsthemke, W., Fractional Dynamics in Comb-Like Structures (2018), World Scientific · Zbl 1425.60003
[112] Iomin, A., Subdiffusion on a fractal comb, Phys. Rev. E, 83 (2011) · doi:10.1103/PhysRevE.83.052106
[113] Rebenshtok, A.; Barkai, E., Occupation times on a comb with ramified teeth, Phys. Rev. E, 88 (2013) · doi:10.1103/PhysRevE.88.052126
[114] Grebenkov, D. S.; Tupikina, L., Heterogeneous continuous-time random walks, Phys. Rev. E, 97 (2018) · doi:10.1103/PhysRevE.97.012148
[115] Baravi, T.; Barkai, E., First passage times in compact domains exhibits bi-scaling (2023)
[116] Barkai, E.; Garini, Y.; Metzler, R., Strange kinetics of single molecules in living cells, Phys. Today, 65, 29-35 (2012) · doi:10.1063/PT.3.1677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.