×

First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions. (English) Zbl 1519.60048

Summary: An important open problem in the theory of Lévy flights concerns the analytically tractable formulation of absorbing boundary conditions. Although the nonlocal approach, where the dynamical operators are given restrictions on their domain properties, has yielded substantial insights regarding the statistics of first passage, the resultant modifications to the dynamical equations hinder the detailed analysis possible in the absence of these nonlocal restrictions. In this study it is demonstrated that using the first-hit distribution, related to the first passage leapover, as the absorbing sink preserves the tractability of the dynamical equations for a particle undergoing Lévy flight. In particular, knowledge of the first-hit distribution is sufficient to fully determine the first passage time and position density of the particle, without requiring operator domain restrictions or numerical simulations. In addition, we report on the first-hit and leapover properties of first passages and arrivals for Lévy flights of arbitrary skew parameter, and extend these results to Lévy flights in a certain ubiquitous class of potentials satisfying an integral condition.

MSC:

60G51 Processes with independent increments; Lévy processes

Software:

Mathematica

References:

[1] Metzler R and Klafter J 2004 J. Phys. A: Math. Gen.37 R161-208 · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/r01
[2] Metzler R and Klafter J 2000 Phys. Rep.339 1-77 · Zbl 0984.82032 · doi:10.1016/s0370-1573(00)00070-3
[3] Klages R, Radons G and Sokolov I M (eds) (ed) 2008 Anomalous Transport (New York: Wiley) · doi:10.1002/9783527622979
[4] Blumenthal R M, Getoor R K and Ray D B 1961 Trans. Am. Math. Soc.99 540-54 · Zbl 0118.13005 · doi:10.2307/1993561
[5] Getoor R K 1961 Trans. Am. Math. Soc.101 75-90 · Zbl 0104.11203 · doi:10.1090/s0002-9947-1961-0137148-5
[6] Rogozin B 1973 Theory Probab. Its Appl.17 332-8 · Zbl 0272.60050 · doi:10.1137/1117035
[7] Kyprianou A E, Pardo J C and Watson A R 2014 Ann. Probab.42 398-430 · Zbl 1306.60051 · doi:10.1214/12-aop790
[8] Profeta C and Simon T 2016 On the Harmonic Measure of Stable Processes (Cham: Springer) pp 325-45 · Zbl 1367.60057
[9] Dybiec B, Gudowska-Nowak E and Chechkin A 2016 J. Phys. A: Math. Theor.49 504001 · Zbl 1357.82056 · doi:10.1088/1751-8113/49/50/504001
[10] Lachal A 2007 Electron. J. Probab.12 300-53 · Zbl 1128.60028 · doi:10.1214/ejp.v12-399
[11] Lachal A 2008 Stoch. Process. their Appl.118 1-27 · Zbl 1136.60026 · doi:10.1016/s0304-4149(07)00189-5
[12] Sokolov I M and Metzler R 2004 J. Phys. A: Math. Gen.37 L609-15 · Zbl 1071.60033 · doi:10.1088/0305-4470/37/46/l02
[13] Chechkin A V, Metzler R, Gonchar V Y, Klafter J and Tanatarov L V 2003 J. Phys. A: Math. Gen.36 L537 · Zbl 1049.60090 · doi:10.1088/0305-4470/36/41/l01
[14] Zumofen G and Klafter J 1995 Phys. Rev. E 51 2805-14 · doi:10.1103/physreve.51.2805
[15] Dybiec B, Gudowska-Nowak E and Hänggi P 2006 Phys. Rev. E 73 046104 · doi:10.1103/physreve.73.046104
[16] Dybiec B, Gudowska-Nowak E, Barkai E and Dubkov A A 2017 Phys. Rev. E 95 052102 · doi:10.1103/physreve.95.052102
[17] Zoia A, Rosso A and Kardar M 2007 Phys. Rev. E 76 021116 · doi:10.1103/physreve.76.021116
[18] Garbaczewski P and Stephanovich V 2019 Phys. Rev. E 99 042126 · doi:10.1103/physreve.99.042126
[19] Buldyrev S V, Havlin S, Kazakov A Y, da Luz M G E, Raposo E P, Stanley H E and Viswanathan G M 2001 Phys. Rev. E 64 041108 · doi:10.1103/physreve.64.041108
[20] Buldyrev S, Gitterman M, Havlin S, Kazakov A, da Luz M, Raposo E, Stanley H and Viswanathan G 2001 Phys. A 302 148-61 · Zbl 0983.60022 · doi:10.1016/s0378-4371(01)00461-7
[21] Andersen E S 1953 Math. Scand.1 263-85 · Zbl 0053.09701 · doi:10.7146/math.scand.a-10385
[22] Sparre Andersen E 1954 Math. Scand.2 195-223 · Zbl 0058.12102 · doi:10.7146/math.scand.a-10407
[23] Deng W, Li B, Tian W and Zhang P 2018 Multiscale Model. Simul.16 125-49 · Zbl 1391.60104 · doi:10.1137/17m1116222
[24] Milovanov A V and Rasmussen J J 2018 Phys. Rev. E 98 022208 · doi:10.1103/physreve.98.022208
[25] Eliazar I and Klafter J 2004 Phys. A 336 219-44 · doi:10.1016/j.physa.2003.12.032
[26] Skorokhod A V, Gihman I I and Gikhman I I 2004 The Theory of Stochastic Processes II (Springer: Berlin) · Zbl 1068.60004
[27] Koren T, Lomholt M A, Chechkin A V, Klafter J and Metzler R 2007 Phys. Rev. Lett.99 160602 · doi:10.1103/physrevlett.99.160602
[28] Koren T, Chechkin A and Klafter J 2007 Phys. A 379 10-22 · doi:10.1016/j.physa.2006.12.039
[29] Padash A, Chechkin A V, Dybiec B, Pavlyukevich I, Shokri B and Metzler R 2019 J. Phys. A: Math. Theor.52 454004 · Zbl 1509.60106 · doi:10.1088/1751-8121/ab493e
[30] García-García R, Rosso A and Schehr G 2012 Phys. Rev. E 86 011101 · doi:10.1103/physreve.86.011101
[31] Bingham N H 1973 Z. Wahrscheinlichkeitstheor. Verwandte Geb.26 273-96 · Zbl 0238.60036 · doi:10.1007/bf00534892
[32] Bertoin J 2012 Levy Processes (Cambridge: Cambridge University Press)
[33] Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736-45 · doi:10.1103/physreve.59.2736
[34] Kramm T 2013 First passage times of Lévy processes over a moving boundary Doctoral Thesis Technische Universitt Berlin, Fakultt II—Mathematik und Naturwissenschaften
[35] Barkai E 2003 Phys. Rev. Lett.90 104101 · doi:10.1103/physrevlett.90.104101
[36] Palyulin V V, Chechkin A V and Metzler R 2014 Proc. Natl Acad. Sci.111 2931-6 · doi:10.1073/pnas.1320424111
[37] Wolfram Research, Inc 2018 Mathematica, Version 11.3
[38] Horváth G, Horváth I, Al-Deen S and Telek M 2019 Numerical inverse laplace transformation by concentrated matrix exponential distributions The 10th Int. Conf. on Matrix-Analytic Methods in Stochastic Models (MAM10)
[39] Brunel N 2000 J. Comput. Neurosci.8 183-208 · Zbl 1036.92008 · doi:10.1023/a:1008925309027
[40] Amit D J and Tsodyks M V 1992 Netw., Comput. Neural Syst.3 121-37 · Zbl 0762.92006 · doi:10.1088/0954-898x_3_2_003
[41] Amit D J and Tsodyks M V 1991 Netw., Comput. Neural Syst.2 259-73 · Zbl 0900.92047 · doi:10.1088/0954-898x_2_3_003
[42] Tuckwell H C 1988 Introduction to Theoretical Neurobiology(Cambridge Studies in Mathematical Biology, vol 2) (Cambridge: Cambridge University Press) · Zbl 0647.92009
[43] Klafter J and Sokolov I M 2011 First Steps in Random Walks: From Tools to Applications (Oxford: Oxford University Press) · Zbl 1242.60046 · doi:10.1093/acprof:oso/9780199234868.001.0001
[44] Bingham N H 1973 Adv. Appl. Probab.5 554-69 · Zbl 0273.60066 · doi:10.2307/1425834
[45] Taillefumier T and Magnasco M O 2013 Proc. Natl Acad. Sci.110 E1438-43 · Zbl 1292.60082 · doi:10.1073/pnas.1212479110
[46] Taillefumier T and Magnasco M 2014 Neural Comput.26 819-59 · Zbl 1415.92062 · doi:10.1162/neco_a_00577
[47] Evans M R, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor.53 193001 · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[48] Wardak A and Gong P Fractional diffusion theory of balanced heterogeneous neural networks (in preparation)
[49] Palyulin V V, Blackburn G, Lomholt M A, Watkins N W, Metzler R, Klages R and Chechkin A V 2019 New J. Phys.21 103028 · doi:10.1088/1367-2630/ab41bb
[50] Janakiraman D 2017 Phys. Rev. E 95 012154 · doi:10.1103/physreve.95.012154
[51] Denisov S I, Horsthemke W and Hänggi P 2008 Phys. Rev. E 77 061112 · doi:10.1103/physreve.77.061112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.