×

Application of multi-objective Bayesian shape optimisation to a sharp-heeled Kaplan draft tube. (English) Zbl 1494.90104

Summary: The draft tube of a hydraulic turbine plays an important role for the efficiency and power characteristics of the overall system. The shape of the draft tube affects its performance, resulting in an increasing need for data-driven optimisation for its design. In this paper, shape optimisation of an elbow-type draft tube is undertaken, combining Computational Fluid Dynamics and a multi-objective Bayesian methodology. The chosen design objectives were to maximise pressure recovery, and minimise wall-frictional losses along the geometry. The design variables were chosen to explore potential new designs, using a series of subdivision-curves and splines on the inflow cone, outer-heel, and diffuser. The optimisation run was performed under part-load for the Kaplan turbine. The design with the lowest energy-loss identified on the Pareto-front was found to have a straight tapered diffuser, chamfered heel, and a convex inflow cone. Analysis of the performance quantities showed the typically used energy-loss factor and pressure recovery were highly correlated in cases of constant outflow cross-sections, and therefore unsuitable for use of multi-objective optimisation. Finally, a number of designs were tested over a range of discharges. From this it was found that reducing the heel size increased the efficiency over a wider operating range.

MSC:

90C29 Multi-objective and goal programming
90C90 Applications of mathematical programming

Software:

NSGA-II; EGO; cfMesh; OpenFOAM

References:

[1] Abbas, A.; Kumar, A., Development of draft tube in hydro-turbine: a review, Int J Ambient Energy, 38, 3, 323-330 (2017) · doi:10.1080/01430750.2015.1111845
[2] Andersson U (2008) An experimental study of the flow in a sharp-heel draft tube. Ph.D. thesis, Luleå University of Technology, Sweden
[3] Andersson U, Engström F, Gustavsson H, Karlsson R (2004) The turbine-99 workshops—conclusions and recommendations. In: 22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden, June 29-July 2, 2004, IAHR
[4] Box, GEP, Science and statistics, J Am Stat Assoc, 71, 356, 791-799 (1976) · Zbl 0335.62002 · doi:10.1080/01621459.1976.10480949
[5] Čarija Z, Mrša Z, Dragović L (2006) Turbulent flow simulation in Kaplan draft tube. In: 5th international congress of croatian society of mechanics
[6] Catmull, E.; Rom, R.; Barnhill, R.; Riesenfeld, R., A class of local interpolating splines, Computer aided geometric design, 317-326 (1974), London: Academic Press, London · doi:10.1016/B978-0-12-079050-0.50020-5
[7] Celik, I.; Ghia, U.; Roache, P.; Freitas, C.; Coleman, H.; Raad, P., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J Fluids Eng, 130, 7, 078001-4 (2008) · doi:10.1115/1.2960953
[8] Cervantes, M.; Gustavsson, L., On the use of the Squire-Long equation to estimate radial velocities in swirling flows, J Fluids Eng, 129, 209-217 (2006) · doi:10.1115/1.2409331
[9] Cervantes M, Engström T, Gustavsson L (eds) (2005) Proceedings of turbine-99 III: workshop on draft tube flow, Luleå University of Technology
[10] Chirkov, DV; Shcherbakov, PK; Cherny, SG; Skorospelov, VA; Turuk, PA, Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine, Thermophys Aeromech, 24, 5, 691-703 (2017) · doi:10.1134/S0869864317050055
[11] Coello Coello, C.; Lamont, G.; Veldhuizen, DV, Evolutionary algorithms for solving multi-objective problems (2007), Berlin: Springer, Berlin · Zbl 1142.90029 · doi:10.1007/978-0-387-36797-2
[12] Dahlbäck N (1996) Redesign of sharp heel draft tube—results from tests in model and prototype. In: Cabrera E, Espert V, Martínez F (eds) Hydraulic machinery and cavitation: proceedings of the XVIII IAHR symposium on hydraulic machinery and cavitation. Springer Netherlands, Dordrecht, pp 985-993. doi:10.1007/978-94-010-9385-9_100
[13] Daniels S, Rahat A, Everson R, Tabor G, Fieldsend J (2018) A suite of computationally expensive shape optimisation problems using computational fluid dynamics. In: International conference on parallel problem solving from nature—PPSN XV, Part II, pp 296-307. doi:10.1007/978-3-319-99259-4_24
[14] Daniels, S.; Rahat, A.; Tabor, G.; Fieldsend, J.; Everson, R., Automated shape optimisation of a plane asymmetric diffuser using combined computational fluid dynamic simulations and multi-objective Bayesian methodology, Int J Comput Fluid Dyn, 33, 256-271 (2019) · Zbl 07474494 · doi:10.1080/10618562.2019.1683165
[15] Daniels S, Rahat A, Tabor G, Fieldsend J, Everson R (2019b) A review of shape distortion methods available in the openfoam framework for automated design optimisation. In: OpenFOAM: selected papers of the 11th workshop. Springer International Publishing. doi:10.1007/978-3-319-60846-4_28 · Zbl 07474494
[16] Daniels, S.; Rahat, A.; Tabor, G.; Fieldsend, J.; Everson, R., Shape optimisation of the sharp-heeled Kaplan draft tube: performance evaluation using computational fluid dynamics, Renew Energy, 160, 112-126 (2020) · doi:10.1016/j.renene.2020.05.164
[17] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, 6, 2, 182-197 (2002) · doi:10.1109/4235.996017
[18] Demirel, G.; Acar, E.; Celebioglu, K.; Aradag, S., CFD-driven surrogate-based multi-objective shape optimization of an elbow type draft tube, Int J of Hydrog Energy, 42, 28, 17601-17610 (2017) · doi:10.1016/j.ijhydene.2017.03.082
[19] Duarte, C.; de Souza, F.; dos Santos, V., Mitigating elbow erosion with a vortex chamber, Powder Technol, 288, 6-25 (2016) · doi:10.1016/j.powtec.2015.10.032
[20] Eisinger, R.; Ruprecht, A., Automatic shape optimisation of hydro turbine components based on CFD. TASK quarterly?, Sci Bull Acad Comput Centre Gdan, 6, 1, 101-111 (2002)
[21] Engström T, Gustavsson L, Karlsson R (eds) (2001) Proceedings of turbine-99—workshop II. Luleå University of Technology, Sweden
[22] Fleischer M (2003) The measure of Pareto optima applications to multi-objective metaheuristics. In: International conference on evolutionary multi-criterion optimization. Springer, pp 519-533 · Zbl 1036.90530
[23] Fonseca C, Fleming P (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. In: Voigt HM, Ebeling W, Rechenberg I, Schwefel HP (eds) Parallel problem solving from nature—PPSN IV, vol 1141. Lecture notes in computer science. Springer, Berlin, pp 584-593
[24] Galván, S.; Rubio, C.; Pacheco, J.; Gildardo, S.; Georgina, C., Optimization methodology assessment for the inlet velocity profile of a hydraulic turbine draft tube: part II—performance evaluation of draft tube model, J Glob Optim, 55, 4, 729-749 (2013) · Zbl 1268.76043 · doi:10.1007/s10898-012-0011-4
[25] Galván, S.; Rubio, C.; Pacheco, J.; Mendoza, C.; Toledo, M., Optimization methodology assessment for the inlet velocity profile of a hydraulic turbine draft tube: part I—computer optimization techniques, J Glob Optim, 55, 1, 53-72 (2013) · Zbl 1263.90091 · doi:10.1007/s10898-012-9946-8
[26] Gebart BR, Gustavsson LH, Karlsson RI (eds) (2000) Turbine-99: workshop on draft tube flow. Luleå University of Technology, Sweden
[27] Gubin, M., Draft tubes of Hydro-electric Stations (1973), New Dehli: Amerind Publishing Co., New Dehli
[28] Hansen N (2009) Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers, pp 2389-2396
[29] Jones, DR; Schonlau, M.; Welch, WJ, Efficient global optimization of expensive black-box functions, J Global Optim, 13, 4, 455-492 (1998) · Zbl 0917.90270 · doi:10.1023/A:1008306431147
[30] Juretić F (2017) cfMesh: advanced meshing tool. http://www.cfMesh.com. Accessed 1 June 2017
[31] Knowles J (2005) A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the international conference on intelligent systems design and applications, ISDA ’05, pp 552-557
[32] López LF (2006) Surface parameterization and optimum design methodology for hydraulic turbines. Ph.D. thesis, ISE, Lausanne, CH
[33] Lövgren M, Cervantes M, Gustavsson H (2007) Time dependent pressure measurements on the turbine-99 draft tube. In: Proceedings of the 2nd IAHR international meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems, Timisoara, Romania, October 24-26, 2007: no. 52(66) in Transaction of Mechanics, Scientific Bulletin of the Politehnica University of Timisoara, Romania, pp 145-152
[34] Mariotti, A.; Grozescu, A.; Buresti, G.; Salvetti, M., Separation control and efficiency improvement in a 2d diffuser by means of contoured cavities, Eur J Mech B Fluids, 41, 138-149 (2013) · doi:10.1016/j.euromechflu.2013.03.002
[35] Marjavaara BD (2006) CFD driven optimization of hydraulic turbine draft tubes using surrogate models. Ph.D. thesis, Luleå University of Technology, Sweden
[36] Marjavaara BD, Lundström TS (2003) Automatic shape optimisation of a hydropower draft tube. In: Fluids engineering division summer meeting, symposia, parts A, B, and C, vol 2, pp 1819-1824. doi:10.1115/FEDSM2003-45181
[37] Marjavaara, BD; Lundström, TS, Redesign of a sharp heel draft tube by a validated CFD-optimization, Int J Numer Methods Fluids, 50, 8, 911-924 (2006) · Zbl 1138.76343 · doi:10.1002/fld.1085
[38] McKay, MD; Beckman, RJ; Conover, WJ, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 1, 55-61 (2000) · Zbl 0415.62011 · doi:10.2307/1268522
[39] McNabb J, Devals C, Kyriacou S, Murry N, Mullins B (2014) CFD based draft-tube hydraulic design optimisation. In: 27th IAHR symposium on hydraulic machinery and systems, IOP conference series: earth environmental science, vol 22#1
[40] Michael C, Torsten W (2000) Special interest group on quality and trust in industrial CFD. Best Practice Guidelines, European Research Community on Flow, Turbulence and Combustion (ERCOFTAC)
[41] Mulu, B.; Jonsson, P.; Cervantes, M., Experimental investigation of a Kaplan draft tube: part I—best efficiency point, Appl Energy, 93, 695-706 (2012) · doi:10.1016/j.apenergy.2012.01.004
[42] Queipo, N.; Haftka, R.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P., Surrogate based analysis and optimization, Prog Aerosp Sci, 41, 1, 1-28 (2005) · doi:10.1016/j.paerosci.2005.02.001
[43] Rahat AAM, Everson RM, Fieldsend JE (2017) Alternative infill strategies for expensive multi-objective optimisation. In: Proceedings of the genetic and evolutionary computation conference, ACM, New York, NY, USA, GECCO ’17, pp 873-880. doi:10.1145/3071178.3071276
[44] Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.; de Freitas, N., Taking the human out of the loop: a review of Bayesian optimisation, Proc IEEE, 104, 1, 148-175 (2016) · doi:10.1109/JPROC.2015.2494218
[45] Stam J (1998) Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’98, pp 395-404. doi:10.1145/280814.280945
[46] Štefan, D.; Rudolf, P.; Skoták, A.; Motyčák, L., Energy transformation and flow topology in an elbow draft tube, Appl Comput Mech, 6, 93-106 (2012)
[47] Zingg, D.; Nemec, M.; Pulliam, T., A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization, Eur J Comput Mech, 17, 1-2, 103-126 (2008) · Zbl 1292.76062 · doi:10.3166/remn.17.103-126
[48] Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, ETH Zurich, Switzerland
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.