×

Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory. (English) Zbl 1367.74020

Summary: In this research, vibration and wave propagation analysis of a twisted microbeam on Pasternak foundation is investigated. The strain-displacement relations (kinematic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at microscale. Finally, using an energy method and Hamilton’s principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave propagation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is inversely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74J05 Linear waves in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74A60 Micromechanical theories
74N15 Analysis of microstructure in solids
Full Text: DOI

References:

[1] Giannakopoulos, A.W., Aravas, N., and Vardoulakis, P. A. A structural gradient theory of torsion, the effects of pretwist, and the tension of pre-twisted DNA. International Journal of Solids and Structures, 50, 3922-3933 (2013) · doi:10.1016/j.ijsolstr.2013.08.003
[2] Ho, S. H. and Chen, C. K. Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform. International Journal of Mechanical Sciences,48, 1323-1331 (2006) · Zbl 1192.74177 · doi:10.1016/j.ijmecsci.2006.05.002
[3] Leung, A. Y. T. and Fan, J. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses. Journal of Sound and Vibration,329, 1901-1923 (2010) · doi:10.1016/j.jsv.2009.12.002
[4] Yu, A. M., Yang, X. G., and Nie, G. H. Generalized coordinate for warping of naturally curved and twisted beams with general cross-sectional shapes. International Journal of Solids and Structures,43, 2853-2876 (2006) · Zbl 1120.74592 · doi:10.1016/j.ijsolstr.2005.05.045
[5] Wang, Q. and Yu, W. A refined model for thermo elastic analysis of initially curved and twisted composite beams. Engineering Structures, 48, 233-244 (2013) · doi:10.1016/j.engstruct.2012.09.007
[6] Mustapha, K. B. and Zhong, Z. W. Wave propagation characteristics of a twisted micro scale beam. International Journal of Engineering Science,53, 46-57 (2012) · Zbl 1423.74699 · doi:10.1016/j.ijengsci.2011.12.006
[7] Cšarek, P., Saje, M., and Zupan, D. Kinematically exact curved and twisted strain-based beam. International Journal of Solids and Structures,49, 1802-1817 (2012) · doi:10.1016/j.ijsolstr.2012.03.033
[8] Chen, W. R. Effect of local Kelvin-Voigt damping on eigen frequencies of cantilevered twisted Timoshenko beams. Procedia Engineering,79, 160-165 (2014) · doi:10.1016/j.proeng.2014.06.325
[9] Subrahmanyam, K. B. and Rao, J. S. Coupled bending-bending vibrations of pre-twisted tapered cantilever beams treated by the Reissner method. Journal of Sound and Vibration,82, 577-592 (1982) · doi:10.1016/0022-460X(82)90408-4
[10] Chen, W. R. On the vibration and stability of spinning axially loaded pre-twisted Timoshenko beams. Finite Elements in Analysis and Design,46, 1037-1047 (2010) · doi:10.1016/j.finel.2010.07.020
[11] Sinha, S. K. and Turner, K. E. Natural frequencies of a pre-twisted blade in a centrifugal force field. Journal of Sound and Vibration,330, 2655-2681 (2011) · doi:10.1016/j.jsv.2010.12.017
[12] Chen, W. R., Hsin, S. W., and Chu, T. H. Vibration analysis of twisted Timoshenko beams with internal Kelvin-Voigt damping. Procedia Engineering,67, 525-532 (2013) · doi:10.1016/j.proeng.2013.12.053
[13] Banerjee, J. R. Free vibration analysis of a twisted beam using the dynamic stiffness method. International Journal of Solids Structures,38, 6703-6722 (2001) · Zbl 0999.74057 · doi:10.1016/S0020-7683(01)00119-6
[14] Sabuncu, M. and Evran, K. The dynamic stability of a rotating pre-twisted asymmetric crosssection Timoshenko beam subjected to lateral parametric excitation. International Journal of Mechanical Sciences,48, 878-888 (2006) · Zbl 1192.74199 · doi:10.1016/j.ijmecsci.2006.01.019
[15] Mohammadimehr, M., Rousta-Navi, B., and Ghorbanpour-Arani, A. Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method. Composite Structures,131, 654-671 (2015) · doi:10.1016/j.compstruct.2015.05.077
[16] Wang, C. M., Zhang, Y. Y., and He, X. Q. Vibration of nonlocal Timoshenko beams. Nanotechnology,18, 9-18 (2007)
[17] Mohammadimehr, M., Rousta-Navi, B., and Ghorbanpour-Arani, A. Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT. Composite Part B: Engineering,87, 132-148 (2016) · doi:10.1016/j.compositesb.2015.10.007
[18] Ghorbanpour-Arani, A., Kolahchi, R., and Vossough, H. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Physica B,407, 4281-4286 (2012) · doi:10.1016/j.physb.2012.07.018
[19] Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Applied Mathematical Modelling,36, 4529-4538 (2012) · Zbl 1252.74016 · doi:10.1016/j.apm.2011.11.073
[20] Aydogdu, M. Longitudinal wave propagation in multi-walled carbon nanotubes. Composite Structures,107, 578-584 (2014) · doi:10.1016/j.compstruct.2013.08.031
[21] Wang, L. Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Computational Materials Science,49, 761-766 (2010) · doi:10.1016/j.commatsci.2010.06.019
[22] Liew, K. M. and Wang, Q. Analysis of wave propagation in carbon nanotubes via elastic shell theories. International Journal of Engineering Science,45, 227-241 (2007) · doi:10.1016/j.ijengsci.2007.04.001
[23] Mohammadimehr, M., Mohammadimehr, M. A., and Dashti, P. Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method (DQM). Applied Mathematics and Mechanics (English Edition),37(4), 529-554 (2016) DOI 10.1007/s10483- 016-2045-9 · Zbl 1345.74042 · doi:10.1007/s10483-016-2045-9
[24] Wang, B., Zhou, S. H., Zhao, J., and Chen, X. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. European Journal of Mechanics A/Solids, 30, 517-524 (2011) · Zbl 1278.74103 · doi:10.1016/j.euromechsol.2011.04.001
[25] Paliwal, D. N., Pendey, R. K., and Nath, T. Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. International Journal of Pressure Vessels and Piping,69, 79-89 (1996) · doi:10.1016/0308-0161(95)00010-0
[26] Reddy J. N. Energy Principles and Variational Methods in Applied Mechanic, John Wiley and Sons, New York (2002)
[27] Li, X. Y., Zhao, X., and Li, Y. H. Green’s functions of the forced vibration of Timoshenko beams with damping effect. Journal of Sound and Vibration,333, 1781-1795 (2014) · doi:10.1016/j.jsv.2013.11.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.