×

Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices. (English) Zbl 1266.60041

Summary: Given a sequence \((M _{n }, Q _{n })_{n \geq 1}\) of i.i.d. random variables with generic copy \((M, Q) \in \operatorname{GL}(d, \mathbb R) \times \mathbb R^{d }\), we consider the random difference equation (RDE) \[ R_{n}=M_{n}R_{n-1}+Q_{n}, \] \(n \geq 1\), and assume the existence of \(\kappa > 0\) such that \[ \lim_{n \to \infty} (\operatorname{E}\| {M_1 \dotsm M_n}\|^\kappa)^{\frac{1}{n}} = 1. \] We prove, under suitable assumptions, that the sequence \(S _{n } = R _{1} + \dotsb + R _{n }\), appropriately normalized, converges in law to a multidimensional stable distribution with index \(\kappa \). As a by-product, we show that the unique stationary solution \(R\) of the RDE is regularly varying with index \(\kappa \) and give a precise description of its tail measure.

MSC:

60F05 Central limit and other weak theorems
60J05 Discrete-time Markov processes on general state spaces
60E07 Infinitely divisible distributions; stable distributions
60H25 Random operators and equations (aspects of stochastic analysis)

References:

[1] Alsmeyer, G., Mentemeier, S.: Tail behaviour of stationary solutions of random difference equations: the case of regular matrices. J. Differ. Equ. Appl. (2012, to appear). doi:10.1080/10236198.2011.571383 · Zbl 1254.60071 · doi:10.1080/10236198.2011.571383
[2] Basrak, B., Davis, R.A., Mikosch, T.: A characterization of multivariate regular variation. Ann. Appl. Probab. 12(3), 908-920 (2002) · Zbl 1070.60011 · doi:10.1214/aoap/1031863174
[3] Benda, M.: A central limit theorem for contractive stochastic dynamical systems. J. Appl. Probab. 35(1), 200-205 (1998) · Zbl 0906.60051 · doi:10.1239/jap/1032192562
[4] Boman, J., Lindskog, F.: Support theorems for the Radon transform and Cramér-Wold theorems. J. Theor. Probab. 22(3), 683-710 (2009) · Zbl 1192.44003 · doi:10.1007/s10959-008-0151-0
[5] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes. Ann. Probab. 20(4), 1714-1730 (1992) · Zbl 0763.60015 · doi:10.1214/aop/1176989526
[6] Buraczewski, D., Damek, E., Guivarc’h, Y.: Convergence to stable laws for a class of multidimensional stochastic recursions. Probab. Theory Relat. Fields 148, 333-402 (2010) · Zbl 1206.60025 · doi:10.1007/s00440-009-0233-7
[7] Buraczewski, D., Damek, E., Guivarc’h, Y.: On multidimensional Mandelbrot’s cascades. arXiv:1109.1845v1 (2011, submitted) · Zbl 1312.15049
[8] Buraczewski, D., Damek, E., Guivarc’h, Y., Hulanicki, A., Urban, R.: Tail-homogeneity of stationary measures for some multidimensional stochastic recursions. Probab. Theory Relat. Fields 145(3-4), 385-420 (2009) · Zbl 1176.60061 · doi:10.1007/s00440-008-0172-8
[9] Buraczewski, D., Damek, E., Mirek, M.: Asymptotics of stationary solutions of multivariate stochastic recursions with heavy tailed inputs and related limit theorems. Stoch. Process. Their Appl. 122(1), 42-67 (2012) · Zbl 1237.60056 · doi:10.1016/j.spa.2011.10.010
[10] de Haan, L., Resnick, S.I., Rootzén, H., de Vries, C.G.: Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes. Stoch. Process. Their Appl. 32(2), 213-224 (1989) · Zbl 0679.60029 · doi:10.1016/0304-4149(89)90076-8
[11] de Saporta, B., Guivarc’h, Y., Le Page, Y.: On the multidimensional stochastic equation Yn + 1 = AnYn + Bn. C. R. Math. Acad. Sci. Paris 339(7), 499-502 (2004) · Zbl 1063.60099 · doi:10.1016/j.crma.2004.07.024
[12] Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41, 45-76 (1999) · Zbl 0926.60056 · doi:10.1137/S0036144598338446
[13] Gao, Z., Guivarc’h, Y., Le Page, E.: Spectral gap properties and convergence to stable laws for affine random walks on ℝd. arXiv:1108.3146v2 (2011, submitted) · Zbl 1330.60016
[14] Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126-166 (1991) · Zbl 0724.60076 · doi:10.1214/aoap/1177005985
[15] Guivarc’h, Y., Le Page, E.: On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Ergod. Theory Dyn. Syst. 28(2), 423-446 (2008) · Zbl 1154.37306
[16] Guivarc’h, Y., Le Page, E.: Spectral gap properties and asymptotics of stationary measures for affine random walks. arXiv:1204.6004v1 (2012, submitted) · Zbl 1357.60010
[17] Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics, vol. 1766. Springer, Berlin (2001) · Zbl 0983.60005 · doi:10.1007/b87874
[18] Hennion, H., Hervé, L.: Central limit theorems for iterated random Lipschitz mappings. Ann. Probab. 32(3A), 1934-1984 (2004) · Zbl 1062.60017 · doi:10.1214/009117904000000469
[19] Hervé, L., Pène, F.: The Nagaev-Guivarc’h method via the Keller-Liverani theorem. Bull. Soc. Math. Fr. 138(3), 415-489 (2010) · Zbl 1205.60133
[20] Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 28(1), 141-152 (1999) · Zbl 0956.37003
[21] Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207-248 (1973) · Zbl 0291.60029 · doi:10.1007/BF02392040
[22] Klüppelberg, C., Pergamenchtchikov, S.: The tail of the stationary distribution of a random coefficient AR(q) model. Ann. Appl. Probab. 14(2), 971-1005 (2004) · Zbl 1094.62114 · doi:10.1214/105051604000000189
[23] Klüppelberg, C., Pergamenchtchikov, S.: Extremal behaviour of models with multivariate random recurrence representation. Stoch. Process. Their Appl. 117(4), 432-456 (2007) · Zbl 1118.60060 · doi:10.1016/j.spa.2006.09.001
[24] Le Page, É.: Théorèmes de renouvellement pour les produits de matrices aléatoires. Séminaires de probabilités Rennes. Publication des Séminaires de Mathématiques, Univ. Rennes I, pp. 1-116 (1983) · Zbl 1254.60071
[25] Mirek, M.: Heavy tail phenomenon and convergence to stable laws for iterated lipschitz maps. Probab. Theory Relat. Fields 151, 705-734 (2011) · Zbl 1236.60025 · doi:10.1007/s00440-010-0312-9
[26] Mirek, M.: On fixed points of a generalized multidimensional affine recursion. Probab. Theory Relat. Fields. arXiv:1111.1756v1 (2012, accepted) · Zbl 1287.60083
[27] Nagaev, S.V.: Some limit theorems for stationary markov chains. Theory Probab. Appl. 2(4), 378-406 (1957) · doi:10.1137/1102029
[28] Wu, W.B., Woodroofe, M.: A central limit theorem for iterated random functions. J. Appl. Probab. 37(3), 748-755 (2000) · Zbl 0969.60032 · doi:10.1239/jap/1014842833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.