×

Convergence to stable laws for a class of multidimensional stochastic recursions. (English) Zbl 1206.60025

The paper considers a Markov chain \(\{X_n\}_{n = 0}^\infty\) on \(\mathbb R^d\) defined by the stochastic recursion \(X_n= M_nX_{n-1}+ Q_n\), where \((Q_n,M_n)\) are i.i.d. random variables taking values in the affine group \(\mathbb R^d\times \text{GL}(\mathbb R^d)\). For the main part of the paper \({M_n}\) is assumed to belong to the similarity group of \(\mathbb R^d\). The authors investigate the weak convergence of the properly centered and normalized partial sums \(S_n= \sum_{k=1}^n {X_k}\) to a normal law or to an infinitely divisible law, which is stable in a natural sense. A local limit theorem for the sums \(S_n\) is proved under an aperiodicity hypothesis.

MSC:

60F05 Central limit and other weak theorems
60E07 Infinitely divisible distributions; stable distributions
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization

References:

[1] Aaronson, J.; Denker, M., Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1, 2, 193-237 (2001) · Zbl 1039.37002 · doi:10.1142/S0219493701000114
[2] Babillot, M.; Peigné, M., Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps, Bull. Soc. Math. France, 134, 1, 119-163 (2006) · Zbl 1118.60012
[3] Brandt, A., The stochastic equation Y_n+1 = A_nY_n + B_n with stationary coefficients, Adv. Appl. Probab., 18, 211-220 (1986) · Zbl 0588.60056 · doi:10.2307/1427243
[4] Breiman, L.: Probability. Addison-Wesley, Reading (1968) · Zbl 0174.48801
[5] Broise, A., Dal’bo, F., Peigné, M.: Études spectrales d’opérateurs de transfert et applications. Astérisque, 238 (1996) · Zbl 0893.00017
[6] Buraczewski, D., On tails of stationary measures on a class of solvable groups, Ann. Inst. H. Poincaré Probab. Stat., 43, 4, 417-440 (2007) · Zbl 1118.60006 · doi:10.1016/j.anihpb.2006.07.002
[7] Buraczewski, D., Damek, E., Guivarc’h, Y., Hulanicki, A., Urban, R.: Tail-homogeneity of stationary measures for some multidimensional stochastic recursions. Probab. Theory Relat. Fields (to appear) · Zbl 1176.60061
[8] Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schrödinger operators. Progress in Probability and Statistics, vol. 8. Birkhauser, Basel (1985) · Zbl 0572.60001
[9] De Calan, C.; Luck, J.; Nienwenhnizen, T. M.; Petritis, D., On the distribution of a random variable occuring in i.i.d disordered systems, J. Phys. A, 18, 3, 501-523 (1983) · doi:10.1088/0305-4470/18/3/025
[10] Diaconis, P.; Freedman, D., Iterated random functions, SIAM Rev., 41, 1, 45-76 (1999) · Zbl 0926.60056 · doi:10.1137/S0036144598338446
[11] Feller, W., An introduction to probability theory and its applications II (1971), New York: Wiley, New York · Zbl 0219.60003
[12] Goldie, Ch. M., Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., 1, 1, 126-166 (1991) · Zbl 0724.60076 · doi:10.1214/aoap/1177005985
[13] Grincevičius, A. K., On limit distribution for a random walk on the line, Lithuanian Math. J., 15, 580-589 (1975) · Zbl 0373.60009 · doi:10.1007/BF00969789
[14] Grincevičius, A. K., Products of random affine transformations, Lithuanian Math. J., 20, 279-282 (1980) · Zbl 0472.60035 · doi:10.1007/BF00967667
[15] Guivarc’h, Y.: Heavy tail properties of multidimensional stochastic recursions. Dynamics and Stochastics: Festschrift in honor of M. S. Keane, vol. 48 of IMS Lecture Notes Monogr. Ser. Inst. Math. Statist., Beachwood, OH, pp. 85-99 (2006) · Zbl 1126.60052
[16] Guivarc’h, Y.; Hardy, J., Théorèmes limites pour une classe de chaines de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Stat., 24, 1, 73-98 (1988) · Zbl 0649.60041
[17] Guivarc’h, Y.; Le Jan, Y., symptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. Ecole Norm. Sup. (4), 26, 1, 23-50 (1993) · Zbl 0784.60076
[18] Guivarc’h, Y.; Le Page, É., On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks, Ergodic Theory Dyn. Syst., 28, 423-446 (2008) · Zbl 1154.37306
[19] Guivarc’h, Y., Le Page, É.: On the tails of stationary laws for affine stochastic recursions. Preprint, Rennes, 2005
[20] Hennion, H., Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Am. Math. Soc., 118, 627-634 (1993) · Zbl 0772.60049
[21] Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic properties of Dynamical Systems by Quasi Compactness. Lecture Notes in Math. 1766, Springer, Berlin · Zbl 0983.60005
[22] Hennion, H.; Hervé, L., Central limit theorems for iterated random Lipschitz mappings, Ann. Probab., 32, 3, 1934-1984 (2004) · Zbl 1062.60017 · doi:10.1214/009117904000000469
[23] Ionescu Tulcea, C. T.; Marinescu, G., Théorie ergodique pour des classes d’opérations non complètement continues, Ann. Math., 52, 2, 140-147 (1950) · Zbl 0040.06502
[24] Jurek, Z.J., Mason, J.D.: Operator-limit distributions in probability theory. Wiley, New York, xvi+292 pp (1993) · Zbl 0850.60003
[25] Keller, G.; Liverani, C., Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 28, 141-152 (1999) · Zbl 0956.37003
[26] Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta Math., 131, 207-248 (1973) · Zbl 0291.60029 · doi:10.1007/BF02392040
[27] Le Page, É.: Théorème de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires. Séminaires de probabilités Rennes 1983, 116 pp, Univ. Rennes I, Rennes (1983)
[28] Le Page, É., Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. H. Poincaré Probab. Stat., 25, 2, 109-142 (1989) · Zbl 0679.60010
[29] Lévy, P., Théorie de l’Addition des Variables Aléatoires (1954), Paris: Gauthier-Villars, Paris · Zbl 0056.35903
[30] Sarig, O., Continuous phase transitions for dynamical systems, Comm. Math. Phys., 267, 3, 631-667 (2006) · Zbl 1123.37012 · doi:10.1007/s00220-006-0072-7
[31] Varopoulos, N. Th., Wiener-Hopf theory and nonunimodular groups, J. Funct. Anal., 120, 2, 467-483 (1994) · Zbl 0849.22008 · doi:10.1006/jfan.1994.1039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.