×

Well-posedness of quantum stochastic differential equations driven by fermion Brownian motion in noncommutative \(L^p\)-space. (English) Zbl 07871696

MSC:

46L51 Noncommutative measure and integration
47J25 Iterative procedures involving nonlinear operators
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] V. P.Belavkin, Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal.42 (1992), 171-201. · Zbl 0762.60059
[2] L.Bouten, R.vanHandel, and M. R.James, An introduction to quantum filtering, SIAM J. Control Optim.46 (2007), no. 6, 2199-2241. · Zbl 1149.93032
[3] C.Barnett, R. F.Streater, and I. F.Wilde, The Itô-Clifford integral, J. Funct. Anal.48 (1982), no. 2, 172-212. · Zbl 0492.46051
[4] C.Barnett, R. F.Streater, and I. F.Wilde, The Itô-Clifford integral. II. Stochastic differential equations, J. Lond. Math. Soc.27 (1983), no. 2, 373-384. · Zbl 0503.60065
[5] C.Barnett, R. F.Streater, and I. F.Wilde, The Itô-Clifford integral. III. The Markov property of solutions to stochastic differential equations, Comm. Math. Phys.89 (1983), no. 1, 13-17. · Zbl 0527.60059
[6] C.Barnett, R. F.Streater, and I. F.Wilde, Quasifree quantum stochastic integrals for the CAR and CCR, J. Funct. Anal.52 (1983), no. 1, 19-47. · Zbl 0513.60063
[7] I. F.Wilde, The free fermion field as a Markov field, J. Funct. Anal.15 (1974), 12-21. · Zbl 0276.60095
[8] D. B.Applebaum, The strong Markov property for fermion Brownian motion, J. Funct. Anal.65 (1986), 273-291. · Zbl 0583.60076
[9] D. B.Applebaum, Fermion Itô’s formula. II. The gauge process in fermion Fock space, Publ. Res. Inst. Math.23 (1987), 17-56. · Zbl 0676.60098
[10] D. B.Applebaum and R. L.Hudson, Fermion Itô’s formula and stochastic evolutions, Comm. Math. Phys.96 (1984), no. 4, 473-496. · Zbl 0572.60052
[11] D. B.Applebaum and R. L.Hudson, Fermion Itô’s formula and stochastic evolutions, J. Math. Phys.25 (1984), no. 4, 858-861.
[12] E. A.Carlen and P.Krée, On martingale inequalities in non‐commutative stochastic analysis, J. Funct. Anal.158 (1998), no. 2, 475-508. · Zbl 0935.46054
[13] M.Gordina, Stochastic differential equations on noncommutative
[( {L}^2 \]\). Finite and infinite dimensional analysis in honor of Leonard Gross (New Orleans, LA, 2001), Vol. 317, American Mathematical Society, Providence, 2003, pp. 87-98. · Zbl 1031.60059
[14] K. B.Sinha and D.Goswami, Quantum stochastic processes and noncommutative geometry Cambridge tracts in mathematics, Vol. 169, Cambridge University Press, Cambridge, 2007. · Zbl 1144.81002
[15] P. A.Meyer, Quantum probability for probabilists, Lecture notes in mathematics, Springer, Berlin, 1538, pp. 1993.
[16] Z.Miao, M. R.James, and I. R.Petersen, Coherent observers for linear quantum stochastic systems, Automatica71 (2016), 264-271. · Zbl 1343.93020
[17] S. A.Albeverio, L. M.Borasi, F. C.De Vecchi, and M.Gubinelli, Grassmannian stochastic analysis and the stochastic quantization of Euclidean fermions, Theory Rel. Fields183 (2022), no. 3‐4, 909-995. · Zbl 1513.81121
[18] J. E.Gough, M. I.Guta, M. R.James, and H. I.Nurdin, Quantum filtering for systems driven by fermion fields, Commun. Inf. Syst.11 (2011), no. 3, 237-267. · Zbl 1271.81090
[19] R. L.Hudson, The early years of quantum stochastic calculus, Commun. Stoch. Anal.6 (2012), no. 1, 111-123. · Zbl 1331.81022
[20] R. L.Hudson and K. R.Parthasarathy, Unification of fermion and boson stochastic calculus, Comm. Math. Phys.104 (1986), 457-470. · Zbl 0604.60063
[21] L.Accardi and F.Fagnola, Stochastic integration, quantum probability and applications, III (Oberwolfach), 1987. 6‐19.
[22] R. L.Hudson and J. M.Lindsay, A noncommutative martingale representation theorem for non‐Fock quantum Brownian motion, J. Funct. Anal.61 (1985), no. 2, 202-221. · Zbl 0577.60055
[23] R. L.Hudson and K. R.Parthasarathy, Stochastic dilations of uniformly continuous completely positive semigroups, Acta Appl. Math.2 (1984), 353-378. · Zbl 0541.60066
[24] J. M.Lindsay and I. F.Wilde, On non‐Fock boson stochastic integrals, J. Funct. Anal.65 (1986), no. 1, 76-82. · Zbl 0611.60050
[25] K. R.Parthasarathy, Quantum Itô’s formula, Rev. Math. Phys.1 (1989), 89-112. · Zbl 0713.60066
[26] collab=K.R, Parthasarathy, Monographs in Mathematics, An introduction to quantum stochastic calculus, 1992. · Zbl 0751.60046
[27] K. R.Parthasarathy and K. B.Sinha, Stochastic integral representation of bounded quantum martingales in Fock space, J. Funct. Anal.67 (1986), 126-151. · Zbl 0594.60059
[28] I. F.Wilde, Quantum martingales and stochastic integrals, quantum probability and applications, III (Oberwolfach, 1987), Lecture Notes Math.1303 (1988), 363-373. · Zbl 0642.46053
[29] R. L.Hudson and K. R.Parthasarathy, Quantum Itô’s formula and stochastic evolutions, Comm. Math. Phys.93 (1984), no. 3, 301-323. · Zbl 0546.60058
[30] R. L.Hudson and R. F.Streater, Noncommutative martingales and stochastic integrals in Fock space, stochastic processes in quantum theory and statistical physics (Marseille, 1981), 216‐222, Lecture Notes in Phys, Vol. 173, Springer, Berlin New York, 1982. · Zbl 0503.60064
[31] J. M.Lindsay, Fermion martingales, Probab. Theory Related Fields.71 (1986), no. 2, 307-320. · Zbl 0578.60063
[32] S. A.Bishop, G. A.Okeke, and K. S.Eke, Mild solutions of evolution quantum stochastic differential equations with nonlocal conditions, Math. Methods Appl. Sci.43 (2020), no. 10, 6254-6261. · Zbl 07271509
[33] S.Dirksen, Noncommutative stochastic integration through decoupling, J. Math. Anal. Appl.370 (2010), 200-223. · Zbl 1201.81081
[34] G.Hong and T.Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal.263 (2012), no. 4, 1064-1097. · Zbl 1368.46053
[35] I. E.Segal, A noncommutative extension of abstract integration, Ann. of Math.57 (1953), no. 3, 401-457. · Zbl 0051.34201
[36] I. E.Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc.81 (1956), 106-134. · Zbl 0070.34003
[37] I. E.Segal, Tensor algebras over Hilbert spaces. II, Ann. of Math.63 (1956), no. 1, 160-175. · Zbl 0073.09403
[38] M.Takesaki, Conditional expectation in von Neumann algebras, J. Funct. Anal.9 (1972), 306-321. · Zbl 0245.46089
[39] G.Pisier and Q.Xu, Noncommutative martingale inequalities, Comm. Math. Phys.189 (1997), 667-698. · Zbl 0898.46056
[40] T.Lancaster and S. J.Blundell, Quantum field theory for the gifted amateur, OUP Oxford, 2014. · Zbl 1286.81003
[41] S.Ren, C.Wang, and Y.Tang, Quantum Bernoulli noises approach to stochastic Schrödinger equation of exclusion type, J. Math. Phys. 61, no. 6 (2020), no. 063509, 13. · Zbl 1452.81103
[42] X.Mao, Stochastic differential equations and their applications, Horwood Publishing, Chichester, 1997. · Zbl 0892.60057
[43] J.Yong and X.Zhou, Stochastic controls, Hamiltonian systems and HJB equations applications of mathematics (New York), Vol. 43, Springer‐Verlag, New York, 1999. · Zbl 0943.93002
[44] Q.Xu, T. N.Bekjan, and Z.Chen, Introduction to operator algebra and non‐commutative
[( {L}^p \]\) space, Vol. 134, Sciencep, Beijing, 2010.
[45] L.Accardi, The noncommutative Markov property, Funksional, Anal. i Priložen.9 (1975), no. 1, 1-8. · Zbl 0395.60076
[46] L.Accardi, A.Frigerio, and J. T.Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci.18 (1982), no. 1, 97-133. · Zbl 0498.60099
[47] L.Accardi and F.Fidaleo, Quantum Markov fields, Infin. Dimens. Anal. Quantum Probab. Relat. Top.6 (2003), no. 1, 123-138. · Zbl 1052.46047
[48] L.Accardi, F.Fidaleo, and F.Mukhamedov, Markov states and chains on the CAR algebra, Infin. Dimens. Anal. Quantum Probab. Relat Top.10 (2007), no. 2, 165-183. · Zbl 1125.46050
[49] L.Accardi, A.Souissi, and E. G.Soueidy, Quantum Markov chains: a unification approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top.23 (2020), no. 2, 2050016 24. · Zbl 1501.46052
[50] G. N.Milstein, Numerical integration of stochastic differential equations, Vol. 313 Springer Science & Business Media, 1995.
[51] D.Baleanu, A.Jajarmi, H.Mohammadi, and S.Rezapour, A new study on the mathematical modelling of human liver with Caputo‐Fabrizio fractional derivative, Chaos Solitons Fractals134 (2020), 109705. · Zbl 1483.92041
[52] D.Baleanu, H.Mohammadi, and S.Rezapour, Analysis of the model of
[( HIV-1 \]\) infection of
[( CD{4}^+ \]\) T‐cell with a new approach of fractional derivative, Adv. Differ. Equ.1 (2020), 1-17. · Zbl 1482.37090
[53] S.Etemad, I.Avci, P.Kumar, D.Baleanu, and S.Rezapour, Some novel mathematical analysis on the fractal‐fractional model of the AH1N1/09 virus and its generalized Caputo‐type version, Chaos Solitons Fractals162 (2022), 112511.
[54] N. H.Tuan, H.Mohammadi, and R.Shahram, A mathematical model for COVID‐19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractals140 (2020), 110107. · Zbl 1495.92104
[55] M.Ahmad, A.Zada, M.Ghaderi, R.George, and S.Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract.6 (2022), 203.
[56] M. M.Matar, M. I.Abbas, J.Alzabut, M. K. A.Kaabar, S.Etemad, and S.Rezapour, Investigation of the
[( p \]\)‐Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Difference Equ.1 (2021), no. 68. · Zbl 1487.34028
[57] R.Ozarslan, E.Bas, D.Baleanu, and B.Acay, Fractional physical problems including wind‐influenced projectile motion with Mittag‐Leffler kernel, AIMS Math.5 (2020), 467-481. · Zbl 1484.70003
[58] M.Dozzi and R.Schott, On the non‐commutative multifractional Brownian motion, Infin. Dimens. Anal. Quantum Probab. Relat. Top.25 (2022), no. 4, 2240010, 1-11. · Zbl 1503.60045
[59] G.Jumarie, Schrödinger equation for quantum fractal space‐time of order
[( n \]\) via the complex‐valued fractional Brownian motion, Int. J. Modern Phys. A16 (2001), no. 31, 5061-5084. · Zbl 1039.81008
[60] J. C.Pardo, J. L.Pérez, and V.Pérez‐Abreu, On the non‐commutative fractional Wishart process, J. Funct. Anal.272 (2017), no. 1, 339-362. · Zbl 1362.60040
[61] S. C.Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann. Appl. Stat.2 (2008), no. 2, 501-535. · Zbl 1400.62272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.