×

On martingale inequalities in non-commutative stochastic analysis. (English) Zbl 0935.46054

The authors give \(L^p\)-estimates for stochastic integrals of the C. Barnett, R. F. Streater and I. F. Wilde type [J. Funct. Anal. 48, 172-212 (1982; Zbl 0492.46051)]. These inequalities enable the extension of the stochastic integrals to all \(L^p\)-spaces for \(1\leq p < \infty\). The integrals are taken with respect to a pair \(P, Q\) of independent free fermionic fields. Let, for a simple adapted integrand \(G\), \(\langle G, G\rangle=\sum_{j}G_{j}^*G_{j}(t_{j}-s_{j})\), and let \(\langle{\mathbb G}, {\mathbb G}\rangle\)= \(\langle G_P, G_P\rangle + \langle G_Q, G_Q \rangle\). Then, for \(1\leq p \leq 2\), there is a constant \(K_p\) depending only on \(p\) such that \[ \|G_P dP\|_p + \|G_Q dQ\|_p \leq K_p\min\{\|\langle {\mathbb G},{\mathbb G}\rangle^{1/2}\|_p, \|\langle {\mathbb G^*},{\mathbb G^*}\rangle^{1/2}\|_p\} \] for any pair \(G_P, G_Q\) of simple adapted processes. Moreover, an \(L^p\)-martingale with \(1<p\leq 2\) can be written as a sum of stochastic integrals with respect to \(dP\) and \(dQ\), and the corresponding integrands \(G_P,G_Q\) are given by an explicit formula. To this end, a differential calculus for the Clifford algebra has been developed. This work should be compared with the paper by G. Pisier and Q. Xu [Commun. Math. Phys. 189, No. 3, 667-698 (1997; Zbl 0898.46056)].

MSC:

46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
60G46 Martingales and classical analysis
60H05 Stochastic integrals
Full Text: DOI

References:

[1] Albeverio, S.; Høegh-Krohn, Dirichlet forms and Markov semigroups on \(C\), Comm. Math. Phys., 56, 173-187 (1977) · Zbl 0384.46043
[2] Araki, H.; Yamagami, S., An inequality for the Hilbert-Schmidt norm, Comm. Math. Phys., 81, 89-96 (1981) · Zbl 0468.47013
[3] Ball, K.; Carlen, E. A.; Lieb, E. H., Optimal 2-uniform convexity and smoothness, Invent. Math., 123 (1993)
[4] Barnett, C.; Lyons, T., Stopping non-commuting processes, Math. Proc. Cambridge Philos., 99, 151-161 (1986) · Zbl 0585.60058
[5] Barnett, C.; Streater, R. F.; Wilde, I. F., The Ito-Clifford integral, J. Funct. Anal., 48, 172-212 (1982) · Zbl 0492.46051
[6] Barnett, C.; Streater, R. F.; Wilde, I. F., Quasifree quantum stochastic integrals for the CAR and for the CCR, J. Funct. Anal., 52, 19-47 (1983) · Zbl 0513.60063
[7] Brauer, R.; Wey, H., Spinors in \(n\), Amer. J. Math., 57, 425-449 (1935) · JFM 61.1025.06
[8] Bourbaki, N., Eléments de mathématiques, Formes sesquilinéaire et formes quadratique (1959), Hermann: Hermann Paris · Zbl 0102.25503
[9] Burkholder, D., Distribution function inequalities for martingales, Ann. Probab., 1, 19-42 (1973) · Zbl 0301.60035
[10] Carlen, E. A.; Lieb, E. H., Optimal hypercontractivity for fermi fields, Comm. Math. Phys., 155, 27-46 (1993) · Zbl 0796.46054
[11] Connes, A., Non-commutative Geometry (1995), Academic Press: Academic Press San Diego · Zbl 0933.46069
[12] Dixmier, J., Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France, 81, 222-245 (1953) · Zbl 0050.11501
[13] Gross, L., Existence and uniqueness of physical ground states, J. Funct. Anal., 10, 52-109 (1972) · Zbl 0237.47012
[14] Gross, L., Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form, Duke Math. J., 43, 383-396 (1975) · Zbl 0359.46038
[15] Hudson, R. L., The strong Markov property for canonical Weiner processes, J. Funct. Anal., 34, 266-289 (1979) · Zbl 0424.46048
[16] Hudson, R.; Parthasarathy, K. R., Quantum Itô’s formula and stochastic evolutions, Comm. Math. Phys., 93, 301-323 (1984) · Zbl 0546.60058
[17] Jordan, P.; Klein, O., Züm Mehrkörperproblem der Quantentheorie, Z. Phys., 45, 751-765 (1927) · JFM 53.0857.02
[18] Jordan, P.; Wigner, E. P., Über das Paulische Äquivalenzverbot, Z. Phys., 47, 631-651 (1928) · JFM 54.0983.03
[19] Kreé, P., Dimension free sochastic calculus in the distribution sense, Stochastic Analysis, Path Integration and Dynamics. Stochastic Analysis, Path Integration and Dynamics, Pitman Res. Notes and Math. Ser., 200 (1986), Longman: Longman Harlow/New York, p. 94-129 · Zbl 0682.46028
[20] Kreé, P.; Lascar, B.; Sjögren, P.; Schachermayer, W., (Kreé, P., Seminaire sur les équations aux derivées partielles en dimension infinie (1975), Secrétariat Mathématique de l’institut H. Poincaré: Secrétariat Mathématique de l’institut H. Poincaré Paris)
[21] Lieb, E. H., Inequalities for some operator and matrix functions, Adv. Math., 20, 174-178 (1976) · Zbl 0324.15013
[22] Lust-Piccard, F.; Pisier, G., Noncommutative Khintchine and Paley inequalities, Ark. Mat., 29, 241-260 (1991) · Zbl 0755.47029
[23] Merris, R.; Dias da Silva, J. A., Generalized Schur functions, J. Linear Algebra, 35, 442-448 (1975) · Zbl 0309.15006
[24] Meyer, P. A., Quantum Probability for Probabilists. Quantum Probability for Probabilists, Lecture Notes Math. (1994), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0877.60079
[25] Nelson, E., The free Markov field, J. Funct. Anal, 12, 211-227 (1973) · Zbl 0273.60079
[26] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030
[27] Novikov, A. A., On moment inequalities for stochastic integrals, Proceedings, Second Japan U.S.S.R. Symposium on Probability Theory. Proceedings, Second Japan U.S.S.R. Symposium on Probability Theory, Lecture Notes in Math. (1973), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0264.60039
[28] Parthasarathy, K. R., An introduction to Quantum Stochastic Calculus (1992), Birkhäuser: Birkhäuser Basel, p. 333-339 · Zbl 0751.60046
[29] G. Pisier, Q. Xu, Clifford, Clifford martingale inequalities, Paris VI; G. Pisier, Q. Xu, Clifford, Clifford martingale inequalities, Paris VI
[30] Plymen, R. J.; Robinson, P. L., Spinsors in Hilbert space (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0813.46048
[31] Ruskai, M. B., Inequalities for traces on Von Neumann algebras, Comm. Math. Phys., 26, 280-289 (1972) · Zbl 0257.46101
[32] Schultz, T. D.; Mattis, D. C.; Lieb, E. H., Two dimensional Ising model as a soluble problem of many fermions, Rev. Modern Phys., 36, 856-871 (1964)
[33] Segal, I. E., A non-commutative extension of abstract integration, Ann. Math., 57, 401-457 (1953) · Zbl 0051.34201
[34] Segal, I. E., Tensor algebras over Hilbert spaces, II, Ann. Math., 63, 160-175 (1956) · Zbl 0073.09403
[35] Segal, I. E., Construction of non-linear local quantum processes: I, Ann. Math., 92, 462-481 (1970) · Zbl 0213.40904
[36] Tomczak-Jaegermann, N., The moduli of smoothness and convexity and Rademacher averages of trace classes\(S_p\)(1⩽\(p\), Studia Math., 50, 163-182 (1974) · Zbl 0282.46016
[37] Umegaki, H., Conditional expectation in operator algebras I, Tôhoku Math. J., 6, 177-181 (1954) · Zbl 0058.10503
[38] Üstünel, A. S., Une extension du calcul de Ito via le calcul des variations stochastiques, C.R. Acad. Sci. Paris, 300, 277-279 (1985) · Zbl 0575.60056
[39] Wiener, N., Differential space, J. Math. Phys., 2, 132-174 (1923) · JFM 49.0412.10
[40] Zakai, M., Some moment inequalities for stochastic integrals and for solutions of stochastic differential equations, Israel J. Math., 3, 170-177 (1967) · Zbl 0166.13803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.