×

Some applications of the theory of stochastic coincidence degree in periodic problems for functional differential inclusions. (English. Russian original) Zbl 07897406

J. Math. Sci., New York 283, No. 3, 366-376 (2024); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 186, 21-31 (2020).
Summary: The method of stochastic integral guiding functions developed on the basis of the theory of a stochastic topological coincidence degree is applied to the study of the periodic problem for stochastic functional differential inclusions in finite-dimensional spaces.

MSC:

34K09 Functional-differential inclusions
34K50 Stochastic functional-differential equations
34K13 Periodic solutions to functional-differential equations
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] Andres, J.; Górniewicz, L., Random topological degree and random differential inclusions, Topol. Meth. Nonlin. Anal., 40, 337-358, 2012 · Zbl 1286.37053
[2] A. V. Arutyunov and V. Obukhovskii, Convex and Set-Valued Analysis. Selected Topics, de Gruyter, Berlin-Boston (2017). · Zbl 1357.49001
[3] Blagodatskikh, VI; Filippov, AF, Differential inclusions and optimal control, Tr. Mat. Inst. Steklova, 169, 194-252, 1985 · Zbl 0595.49026
[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, and V. V.Obuhovskii, Introduction to the Theory of Miltivalued Mappings and Differential Inclusions [in Russian], Librokom, Moscow (2011). · Zbl 1231.54001
[5] K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin-New York (1992). · Zbl 0760.34002
[6] Fonda, A., Guiding functions and periodic solutions to functional differential equations, Proc. Am. Math. Soc., 99, 1, 79-85, 1987 · Zbl 0616.34038
[7] E. N. Getmanova, “On the coincidence degree for some classes of stochastic multimappings and linear Fredholm operators,” in: Proc. Int. Conf. “Contemporary Methods of the Theory of Boundary-Value Problems”: Voronezh Spring Math. School “Pontryagin Readings-XXX” (Voronezh, May 3-9, 2019), Voronezh (2019).
[8] Gliklikh, Yu; Kornev, S.; Obukhovskii, V., Guiding potentials and periodic solutions of differential equations on manifolds, Glob. Stochast. Anal., 6, 1, 1-7, 2019
[9] Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings, 2006, Berlin: Springer-Verlag, Berlin · Zbl 1107.55001
[10] M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin-New York (2001). · Zbl 0988.34001
[11] Kisielewicz, M., Differential Inclusions and Optimal Control, 1991, Dordrecht: PWN, Dordrecht · Zbl 0731.49001
[12] Kornev, SV, Nonsmooth integral guiding functions in problems on forced oscillation, Avtomat. Telemekh., 9, 31-43, 2015
[13] Kornev, SV, Multivalent guiding functions in the problem on the existence of periodic solutions of differential inclusions with nonconvex right-hand sides, Izv. Vyssh. Ucheb. Zaved. Mat., 11, 14-26, 2016 · Zbl 1410.34069
[14] Kornev, SV, Guiding functions on a given set in the problem on the existence of periodic solutions of differential inclusions with nonconvex right-hand sides, Vestn. Voronezh. Univ. Ser. Fiz. Mat., 2, 107-122, 2016 · Zbl 1357.34043
[15] Kornev, SV, Method of nonsmooth integral guiding functions in the problem on the existence of periodic solutions of inclusions with causal operators, Vestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program., 9, 2, 46-59, 2016 · Zbl 1359.34072
[16] Kornev, SV; Liou, YC; Loi, NV; Obukhovskii, VV, On periodic solutions of random differential inclusions, Appl. Anal. Optim., 1, 2, 245-258, 2017 · Zbl 1483.90117
[17] Kornev, SV; Loi, NV; Obukhovskii, VV; Wen, CF, Random nonsmooth integral guiding functions and asymptotic behavior of trajectories for random differential inclusions, J. Nonlin. Convex Anal., 19, 3, 493-500, 2018 · Zbl 1446.34072
[18] S. V. Kornev and V. V. Obuhovskii, “On integral guiding functions for functional differential inclusions,” in: Topological Methods of Nonlinear Analysis [in Russian], Voronezh (2000), pp. 87-107.
[19] S. V. Kornev and V. V. Obuhovskii, “On some versions of the theory of topological degree for colvex-valued multimappings,” in: Proceedings of Mathematical Faculty of the Voronezh State University [in Russian], Voronezh. Univ., Voronezh (2004), pp. 56-74.
[20] Kornev, S.; Obukhovskii, V., On some developments of the method of integral guiding functions, Funct. Differ. Equ., 12, 3-4, 303-310, 2005 · Zbl 1081.34070
[21] Kornev, SV; Obuhovskii, VV, On localizing the method of guiding functions in the problem on periodic solution of differential inclusions, Izv. Vyssh. Ucheb. Zaved. Mat., 5, 23-32, 2009
[22] Kornev, SV; Obuhovskii, VV, “Integral guiding functions and periodic solutions of inclusions with causal operators”, Vestn, Tambov. Univ. Ser. Estestv. Tekhn. Nauki, 21, 1, 55-65, 2016
[23] Kornev, SV; Obuhovskii, VV; Zecca, P., Method of generalized integral guiding functions in the problem on the existence of periodic solutions of functional differential inclusions, Differ. Uravn., 52, 10, 1335-1344, 2016 · Zbl 1371.34108
[24] Kornev, S.; Obukhovskii, V.; Zecca, P., Guiding functions and periodic solutions for inclusions with causal multioperators, Appl. Anal., 96, 3, 418-428, 2017 · Zbl 1418.34128 · doi:10.1080/00036811.2016.1139088
[25] Kornev, S.; Obukhovskii, V.; Zecca, P., On multivalent guiding functions method in the periodic problem for random differential equations, J. Dynam. Differ. Equ., 31, 2, 1017-1028, 2019 · Zbl 1425.34076 · doi:10.1007/s10884-019-09734-5
[26] M. A. Krasnoselskii, The Operator of Translation along Trajectories of Differential Equations [in Russian], Nauka, Moscow (1966). · Zbl 0149.05201
[27] Krasnoselskii, MA; Perov, AI, On one principle of the existence of bounded, periodic, and almost periodic solutions of systems of ordinary differential equations, Dokl. Akad. Nauk SSSR, 123, 2, 235-238, 1958 · Zbl 0088.06504
[28] M. A. Krasnoselskii, A. I. Perov, A. I. Povolotskii, and P. P. Zabreiko, Vector Fields on the Plane [in Russian], Fizmatgiz, Moscow (1963). · Zbl 0114.04301
[29] M. A. Krasnoselskii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975). · Zbl 0326.47052
[30] J. L. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Am. Math. Soc., Providence, Rhode Island (1979). · Zbl 0414.34025
[31] Mawhin, J.; Thompson, HB, Periodic or bounded solutions of Carath´eodory systems of ordinary differential equations, J. Dynam. Differ. Equ., 15, 2-3, 327-334, 2003 · Zbl 1055.34035 · doi:10.1023/B:JODY.0000009739.00640.44
[32] J. Mawhin and J. R. Ward (Jr.), “Guiding-like functions for periodic or bounded solutions of ordinary differential equations,” Discr. Contin. Dynam. Syst., 8, No. 1 (2002), pp. 39-54. · Zbl 1087.34518
[33] Obukhovskii, V.; Zecca, P.; Loi, NV; Kornev, S., Method of Guiding Functions in Problems of Nonlinear Analysis, 2013, Berlin: Springer-Verlag, Berlin · Zbl 1282.34003 · doi:10.1007/978-3-642-37070-0
[34] T. Pruszko, “A coincidence degree for L-compact convex-valued mappings and its application to the Picard problem for orientor fields,” Bull. Acad. Pol. Sci. S´er. Math., 27, No. 11-12 (1979), pp. 895-902. · Zbl 0459.47055
[35] Pruszko, T., Topological degree methods in multi-valued boundary value problems, Nonlin. Anal. Theory Meth. Appl., 5, 9, 959-970, 1981 · Zbl 0478.34017 · doi:10.1016/0362-546X(81)90056-0
[36] Rachinskii, DI, Multivalent guiding functions in forced oscillation problems, Nonlin. Anal. Theory Meth. Appl., 26, 631-639, 1996 · Zbl 0840.34038 · doi:10.1016/0362-546X(94)00305-2
[37] E. Tarafdar and S. K. Teo, “On the existence of solutions of the equation Lx ∈ Nx and a coincidence degree theory,” J. Austr. Math. Soc., A. 28, No. 2 (1979), pp. 139-173. · Zbl 0431.47038
[38] E. Tarafdar, P. Watson, and X. Z. Yuan, “Random coincidence degree theory with applications to random differential inclusions,” Comment. Math. Univ. Carol. (1996), pp. 725-748. · Zbl 0886.47030
[39] A. A.Tolstonogov, Differential Inclusions in Banach Spaces [in Russian], Nauka, Novosibirsk (1986). · Zbl 0689.34014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.