×

Run-and-tumble particles on a line with a fertile site. (English) Zbl 1519.82066

Summary: We propose a model of run-and-tumble particles (RTPs) on a line with a fertile site at the origin. After going through the fertile site, a run-and-tumble particle gives rise to new particles until it flips direction. The process of creation of new particles is modelled by a fertility function (of the distance to the fertile site), multiplied by a fertility rate. If the initial conditions correspond to a single RTP with even probability density, the system is parity-invariant. The equations of motion can be solved in the Laplace domain, in terms of the density of right-movers at the origin. At large time, this density is shown to grow exponentially, at a rate that depends only on the fertility function and fertility rate. Moreover, the total density of RTPs (divided by the density of right-movers at the origin), reaches a stationary state that does not depend on the initial conditions, and presents a local minimum at the fertile site.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60J60 Diffusion processes

References:

[1] Berg, H. C., E. coil in Motion (2008), Berlin: Springer, Berlin
[2] Ramaswamy, S., The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., 1, 323-345 (2010) · doi:10.1146/annurev-conmatphys-070909-104101
[3] Cates, M. E.; Tailleur, J., Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., 6, 219-244 (2015) · doi:10.1146/annurev-conmatphys-031214-014710
[4] Malakar, K.; Jemseena, V.; Kundu, A.; Kumar, K. V.; Sabhapandit, S.; Majumdar, S. N.; Redner, S.; Dhar, A., Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension, J. Stat. Mech. (2018) · Zbl 1459.82182 · doi:10.1088/1742-5468/aab84f
[5] Hartmann, A. K.; Majumdar, S. N.; Schawe, H.; Schehr, G., The convex hull of the run-and-tumble particle in a plane, J. Stat. Mech. (2020) · Zbl 1456.60105 · doi:10.1088/1742-5468/ab7c5f
[6] Le Doussal, P.; Majumdar, S. N.; Schehr, G., Noncrossing run-and-tumble particles on a line, Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.012113
[7] Masoliver, J.; Porrà, J. M.; Weiss, G. H., Solutions of the telegrapher’s equation in the presence of traps, Phys. Rev. A, 45, 2222 (1992) · doi:10.1103/physreva.45.2222
[8] Mori, F.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Universal survival probability for a d-dimensional run-and-tumble particle, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.090603
[9] Evans, M. R.; Majumdar, S. N., Run and tumble particle under resetting: a renewal approach, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1411.82028 · doi:10.1088/1751-8121/aae74e
[10] Santra, I.; Basu, U.; Sabhapandit, S., Run-and-tumble particles in two dimensions: marginal position distributions, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.062120
[11] Santra, I.; Basu, U.; Sabhapandit, S., Run-and-tumble particles in two dimensions under stochastic resetting conditions, J. Stat. Mech. (2020) · doi:10.1088/1742-5468/abc7b7
[12] Bauer, M.; Krapivsky, P.; Mallick, K., Random walk through a fertile site, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.022114
[13] Redner, S.; Kang, K., Unimolecular reaction kinetics, Phys. Rev. A, 30, 3362 (1984) · doi:10.1103/physreva.30.3362
[14] Ben-Avraham, D.; Redner, S.; Cheng, Z., Random walk in a random multiplicative environment, J. Stat. Phys., 56, 437-459 (1989) · doi:10.1007/bf01044445
[15] Thompson, A. G.; Tailleur, J.; Cates, M. E.; Blythe, R. A., Lattice models of nonequilibrium bacterial dynamics, J. Stat. Mech. (2011) · doi:10.1088/1742-5468/2011/02/p02029
[16] Soto, R.; Golestanian, R., Run-and-tumble dynamics in a crowded environment: persistent exclusion process for swimmers, Phys. Rev. E, 89 (2014) · doi:10.1103/physreve.89.012706
[17] Slowman, A. B.; Evans, M. R.; Blythe, R. A., Jamming and attraction of interacting run-and-tumble random walkers, Phys. Rev. Lett., 116 (2016) · Zbl 1378.92044 · doi:10.1103/physrevlett.116.218101
[18] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biology, 26, 263-298 (1988) · Zbl 0713.92018 · doi:10.1007/bf00277392
[19] Martens, K.; Angelani, L.; Di Leonardo, R.; Bocquet, L., Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model, Eur. Phys. J. E, 35, 84 (2012) · doi:10.1140/epje/i2012-12084-y
[20] Weiss, G. H., Some applications of persistent random walks and the telegrapher’s equation, Physica A, 311, 381-410 (2002) · Zbl 0996.35040 · doi:10.1016/s0378-4371(02)00805-1
[21] Friedman, N.; Cai, L.; Xie, X. S., Linking stochastic dynamics to population distribution: an analytical framework of gene expression, Phys. Rev. Lett., 97 (2006) · doi:10.1103/physrevlett.97.168302
[22] Cai, L.; Friedman, N.; Xie, X. S., Stochastic protein expression in individual cells at the single molecule level, Nature, 440, 358-362 (2006) · doi:10.1038/nature04599
[23] Yu, J.; Xiao, J.; Ren, X.; Lao, K.; Xie, X. S., Probing gene expression in live cells, one protein molecule at a time, Science, 311, 1600-1603 (2006) · doi:10.1126/science.1119623
[24] Evans, M. R.; Majumdar, S. N., Effects of refractory period on stochastic resetting, J. Phys. A: Math. Theor., 52 (2018) · Zbl 1422.60054 · doi:10.1088/1751-8121/aaf080
[25] Evans, M. R.; Majumdar, S. N., Diffusion with stochastic resetting, Phys. Rev. Lett., 106 (2011) · Zbl 1465.60070 · doi:10.1103/physrevlett.106.160601
[26] Evans, M. R.; Majumdar, S. N., Diffusion with optimal resetting, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1465.60070 · doi:10.1088/1751-8113/44/43/435001
[27] Mercado-Vásquez, G.; Boyer, D., Lotka-Volterra systems with stochastic resetting, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1407.92114 · doi:10.1088/1751-8121/aadbc0
[28] Toledo-Marin, J. Q.; Boyer, D.; Sevilla, F. J., Predator-prey dynamics: chasing by stochastic resetting (2019)
[29] Grange, P., Non-conserving zero-range processes with extensive rates under resetting, J. Phys. Commun., 4 (2020) · doi:10.1088/2399-6528/ab81b2
[30] Magoni, M.; Majumdar, S. N.; Schehr, G., Ising model with stochastic resetting, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.033182
[31] Sadekar, O.; Basu, U., Zero-current nonequilibrium state in symmetric exclusion process with dichotomous stochastic resetting, J. Stat. Mech. (2020) · Zbl 1459.82194 · doi:10.1088/1742-5468/ab9e5e
[32] Grange, P., Susceptibility to disorder of the optimal resetting rate in the Larkin model of directed polymers, J. Phys. Commun., 4 (2020) · doi:10.1088/2399-6528/abb752
[33] Evans, M. R.; Majumdar, S. N.; Schehr, G., Stochastic resetting and applications, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[34] Umehara, S.; Inoue, I.; Wakamoto, Y.; Yasuda, K., Origin of individuality of two daughter cells during the division process examined by the simultaneous measurement of growth and swimming property using an on-chip single-cell cultivation system, J Biophysical, 93, 1061-7 (2007) · doi:10.1529/biophysj.106.098061
[35] Locatelli, E.; Baldovin, F.; Orlandini, E.; Pierno, M., Active Brownian particles escaping a channel in single file, Phys. Rev. E, 91 (2015) · doi:10.1103/physreve.91.029903
[36] Basu, U.; Majumdar, S. N.; Rosso, A.; Sabhapandit, S.; Schehr, G., Exact stationary state of a run-and-tumble particle with three internal states in a harmonic trap, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.60094 · doi:10.1088/1751-8121/ab6af0
[37] Tailleur, J.; Cates, M. E., Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett., 100 (2008) · doi:10.1103/physrevlett.100.218103
[38] Vicsek, T., Fluctuations and Scaling in Biology (2001), Oxford: Oxford University Press, Oxford
[39] Vicsek, T.; Zafeiris, A., Collective motion, Phys. Rep., 517, 71-140 (2012) · doi:10.1016/j.physrep.2012.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.