×

Effects of refractory period on stochastic resetting. (English) Zbl 1422.60054

Summary: We consider a stochastic process undergoing resetting after which a random refractory period is imposed. In this period the process is quiescent and remains at the resetting position. Using a first-renewal approach, we compute exactly the stationary position distribution and analyse the emergence of a delta peak at the resetting position. In the case of a power – law distribution for the refractory period we find slow relaxation. We generalise our results to the case when the resetting period and the refractory period are correlated, by computing the Laplace transform of the survival probability of the process and the mean first passage time, i.e. the mean time to completion of a task. We also compute exactly the joint distribution of the active and absorption time to a fixed target.

MSC:

60G07 General theory of stochastic processes
60G22 Fractional processes, including fractional Brownian motion
60J60 Diffusion processes
60K15 Markov renewal processes, semi-Markov processes
49M20 Numerical methods of relaxation type
62N02 Estimation in survival analysis and censored data

Software:

RESTART

References:

[1] Evans, M. R.; Majumdar, S. N., Diffusion with stochastic resetting, Phys. Rev. Lett., 106, (2011) · Zbl 1465.60070 · doi:10.1103/PhysRevLett.106.160601
[2] Evans, M. R.; Majumdar, S. N., Diffusion with optimal resetting, J. Phys. A: Math. Theor., 44, (2011) · Zbl 1465.60070 · doi:10.1088/1751-8113/44/43/435001
[3] Evans, M. R.; Majumdar, S. N., Diffusion with resetting in arbitrary spatial dimension, J. Phys. A: Math. Theor., 47, (2014) · Zbl 1303.60069 · doi:10.1088/1751-8113/47/28/285001
[4] Kusmierz, L.; Majumdar, S. N.; Sabhapandit, S.; Schehr, G., First order transition for the optimal search time of Lévy flights with resetting, Phys. Rev. Lett., 113, (2014) · doi:10.1103/PhysRevLett.113.220602
[5] Evans, M. R.; Majumdar, S. N., Run and tumble particle under resetting: a renewal approach, J. Phys. A: Math. Theor., 51, (2018) · Zbl 1411.82028 · doi:10.1088/1751-8121/aae74e
[6] Villen-Altramirano, M.; Villen-Altramirano, J.; Cohen, J. W.; Pack, C. D., RESTART: a method for accelerating rare event simulations, Queueing Performance and Control in ATM, (1991), New York: Elsevier, New York
[7] Luby, M.; Sinclair, A.; Zuckerman, D., Optimal speedup of Las Vegas algorithms, 47, 4391, (1993) · Zbl 0797.68139
[8] Tong, H.; Faloutsos, C.; Pan, J-Y, Random walk with restart: fast solutions and applications, Knowl. Inf. Syst., 14, 327, (2008) · Zbl 1161.68701 · doi:10.1007/s10115-007-0094-2
[9] Reuveni, S.; Urbakh, M.; Klafter, J., Role of substrate unbinding in Michaelis-Menten enzymatic reactions, Proc. Natl Acad. Sci. USA, 111, 4391, (2014) · doi:10.1073/pnas.1318122111
[10] Rothart, T.; Reuveni, S.; Urbakh, M., Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem, Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.060101
[11] Reuveni, S., Optimal stochastic restart renders fluctuations in first-passage times universal, Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.170601
[12] Bar-Ziv, R.; Tlusty, T.; Libchaber, A., ProteinDNA computation by stochastic assembly cascade, Proc. Natl Acad. Sci. USA, 99, 11589, (2002) · doi:10.1073/pnas.162369099
[13] Murugan, A.; Huse, D. A.; Leibler, S., Speed, dissipation, and error in kinetic proofreading, Proc. Natl Acad. Sci. USA, 109, 12034, (2012) · doi:10.1073/pnas.1119911109
[14] Murugan, A.; Huse, D. A.; Leibler, S., Discriminatory proofreading regimes in nonequilibrium systems, Phys. Rev. X, 4, (2014) · doi:10.1103/physrevx.4.021016
[15] Abdelrahman, O. H.; Gelenbe, E., Time and energy in team-based search, Phys. Rev. E, 87, (2013) · doi:10.1103/PhysRevE.87.032125
[16] Bénichou, O.; Moreau, M.; Suet, P-H; Voituriez, R., Intermittent search process and teleportation, J. Chem. Phys., 126, (2007) · Zbl 1132.68357 · doi:10.1063/1.2741516
[17] Sornette, D., Why Stock Markets Crash, (2017), Princeton, NJ: Princeton University Press, Princeton, NJ
[18] Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. S., Single-molecule Michaelis-Menten equations, J. Phys. Chem. B, 109, 19068, (2005) · doi:10.1021/jp051490q
[19] Pal, A.; Kundu, A.; Evans, M. R., Diffusion under time-dependent resetting, J. Phys. A: Math. Theor., 49, (2016) · Zbl 1345.60090 · doi:10.1088/1751-8113/49/22/225001
[20] Majumdar, S. N.; Sabhapandit, S.; Schehr, G., Dynamical transition in the temporal relaxation of stochastic processes under resetting, Phys. Rev. E, 91, (2015) · doi:10.1103/PhysRevE.91.052131
[21] Pal, A.; Reuveni, S., First passage under restart, Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.030603
[22] Husain, K.; Krishna, S., Efficiency of a stochastic search with punctual and costly restarts, (2016)
[23] Chechkin, A.; Sokolov, I. M., Random search with resetting: a unified renewal approach, Phys. Rev. Lett., 121, (2018) · doi:10.1103/PhysRevLett.121.050601
[24] Evans, M. R.; Majumdar, S. N.; Zia, R. K P., Canonical analysis of condensation in factorized steady states, J. Stat. Phys., 123, 357, (2006) · Zbl 1097.82025 · doi:10.1007/s10955-006-9046-6
[25] Majumdar, S. N.; Dean, D. S.; Grassberger, P., Coarsening in presence of Kinetic disorders: analogy to granular compaction, Phys. Rev. Lett., 86, 2301, (2001) · doi:10.1103/PhysRevLett.86.2301
[26] Majumdar, S. N., Brownian functionals in physics and computer science, Curr. Sci., 89, 2076, (2005)
[27] Bray, A. J.; Majumdar, S. N.; Schehr, G., Persistence and first-passage properties in nonequilibrium systems, Adv. Phys., 62, 225, (2013) · doi:10.1080/00018732.2013.803819
[28] Montero, M.; Masó-Puigdellosas, A.; Villarroel, J., Continuous-time random walks with reset events: historical background and new perspectives, Eur. Phys. J. B, 90, 176, (2017) · doi:10.1140/epjb/e2017-80348-4
[29] Visco, P.; Allen, R. J.; Majumdar, S. N.; Evans, M. R., Switching and growth for microbial populations in catastrophic responsive environments, Biophys. J., 98, 1099, (2010) · doi:10.1016/j.bpj.2009.11.049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.