×

Effect of coupling on stochastic resonance and stochastic antiresonance processes in a unidirectionally \(N\)-coupled systems in periodic sinusoidal potential. (English) Zbl 1400.82177

Summary: This work presents the characterization of stochastic resonance (SR) and stochastic antiresonance (SAR) in terms of hysteresis loop area (HLA). In connection with SR and SAR phenomena, we study the dynamics of a chain of particles coupled by nonlinear springs in a periodic sinusoidal potential. The dependence of the coupling parameter as well as the system size on SR and SAR is analysed. We consider the role played by the nonlinear coupling on the SR. We show that there is a range of coupling parameter where only SAR is observed, after this range the SR can occur, however, there also exists a range where neither SAR nor SR appear. It is noted that the maximum and the minimum of the average input energy increases with the coupling parameter. Also demonstrate that there exists an optimal value of the number of particles \(N\) for which the average input energy of the first particle reaches the saturation.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
34F15 Resonance phenomena for ordinary differential equations involving randomness
Full Text: DOI

References:

[1] Benzi, R.; Sutera, A.; Vulpiani, A., J. Phys. A, 14, 453 (1981)
[2] McNamara, B.; Wiesenfeld, K., Phys. Rev. A, 39, 4854 (1989)
[3] Djuidje Kenmoé, G.; Wadop Ngouongo, Y. J.; Kofané, T. C., J. Stat. Phys., 161, 475 (2015) · Zbl 1327.82066
[4] Fauve, S.; Heslot, F., Phys. Lett. A, 97, 5 (1983)
[5] McNamara, B.; Wiesenfeld, K.; Roy, R., Phys. Rev. Lett., 60, 2626 (1988)
[6] Badzey, R. L.; Mohanty, P., Nature, 437, 995 (2005)
[7] Zhanga, H.; Yang, T.; Xu, Y.; Xu, W., Eur. Phys. J. B, 88, 125 (2015)
[8] Han, Q.; Yang, T.; Zeng, C.; Wang, H.; Liu, Z.; Fu, Y.; Zhang, C.; Tian, D., Physica A, 408, 96 (2014) · Zbl 1395.92183
[9] Yilmaz, E.; Uzuntarla, M.; Ozer, M.; Perc, M., Physica A, 392, 5735 (2013) · Zbl 1395.34067
[10] Evstigneev, M.; Reimann, P.; Pankov, V.; Prince, R. H., Europhys. Lett., 65, 7 (2004)
[11] Blondeau, F. C., Phys. Lett. A, 232, 41 (1997)
[12] Borkowski, L. S., Phys. Rev. E, 82, Article 041909 pp. (2010)
[13] Ghikas, D. P.K.; Tzemos, A. C., Int. J. Quantum Inf., 10, 1250023 (2012) · Zbl 1242.81042
[14] Agudov, N. V.; Krichigin, A. V., Radiophys. Quantum Electron., 51, 812 (2008)
[15] Mahato, M. C.; Jayannavar, A. M., Physica A, 248, 138 (1998)
[16] Reenbohn, W. L.; Pohlong, S. S.; Mahato, C. M., Phys. Rev. E, 85, Article 031144 pp. (2012)
[17] Dan, D.; Jayannavar, A. M., Physica A, 345, 404 (2005)
[18] Scarsoglio, S.; D’Odorico, P.; Laio, F.; Ridolfi, L., Ecol. Complexity, 10, 93 (2012)
[19] Rajamani, S.; Rajasekar, S.; Sanjuán, M. A.F., Commun. Nonlinear Sci. Numer. Simul., 19, 4003 (2014) · Zbl 1470.94054
[20] Gudyma, Iu., Eur. Phys. J. B, 87, 205 (2014)
[21] Jothimurugan, R.; Thamilmaran, K.; Rajasekar, S.; Sanjuan, M. A.F., Nonlinear Dynam. (2015), arXiv:1510.01564 [nlin.CD]
[22] Cuevas-Maraver, J.; Malomed, B. A.; Kevrekidis, P. G., Symmetry, 8, 39 (2016) · Zbl 1373.35195
[23] Gudyma, Iu., Physica B, 486, 44 (2016)
[24] Sekimoto, K., J. Phys. Soc. Japan, 66, 6335 (1997)
[25] Kasdin, N., J. Guid. Control Dyn., 18, 114 (1995) · Zbl 0838.93080
[26] Machura, L.; Kostur, M.; Talkner, P.; Łuczka, J.; Marchesoni, F.; Hänggi, P., Phys. Rev. E, 70, Article 061105 pp. (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.