×

Dynamical behaviors of a food-chain model with stage structure and time delays. (English) Zbl 1446.37083

Summary: Incorporating two delays (\(\tau_{1}\) represents the maturity of predator, \(\tau_{2}\) represents the maturity of top predator), we establish a novel delayed three-species food-chain model with stage structure in this paper. By analyzing the characteristic equations, constructing a suitable Lyapunov functional, using Lyapunov-LaSalle’s principle, the comparison theorem and iterative technique, we investigate the existence of nonnegative equilibria and their stability. Some interesting findings show that the delays have great impacts on dynamical behaviors for the system: on one hand, if \(\tau_{1}\in (m_{1},m_{2})\) and \(\tau_{2}\in(m_{4}, +\infty)\), then the boundary equilibrium \(E_{2}(x^{0}, y_{1}^{0}, y_{2}^{0}, 0, 0)\) is asymptotically stable (AS), i.e., the prey species and the predator species will coexist, the top-predator species will go extinct; on the other hand, if \(\tau_{1}\in(m_{2}, +\infty)\), then the axial equilibrium \(E_{1}(k, 0, 0, 0, 0)\) is AS, i.e., all predators will go extinct. Numerical simulations are great well agreement with the theoretical results.

MSC:

37N25 Dynamical systems in biology
92D40 Ecology

References:

[1] Tripathi, J., Abbas, S., Thakur, M.: Local and global stability analysis of a two prey one predator model with help. Commun. Nonlinear Sci. Numer. Simul. 19, 3284-3297 (2014) · Zbl 1510.92187 · doi:10.1016/j.cnsns.2014.02.003
[2] Fang, J., Gourley, S., Lou, Y.: Stage-structured models of intra- and inter-specific competition within age classes. J. Differ. Equ. 260, 1918-1953 (2016) · Zbl 1382.34089 · doi:10.1016/j.jde.2015.09.048
[3] Gao, S., Chen, L., Teng, Z.: Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator. Appl. Math. Comput. 202, 721-729 (2008) · Zbl 1151.34067
[4] Hu, H., Huang, L.: Stability and Hopf bifurcation in a delayed predator-prey system with stage structure for prey. Nonlinear Anal., Real World Appl. 11, 2757-2769 (2010) · Zbl 1203.34132 · doi:10.1016/j.nonrwa.2009.10.001
[5] Aiello, W., Freedman, H.: A time delay model of single-species growth with stage structure. Math. Biosci. 101, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[6] Kuang, Y., So, J.: Analysis of a delayed two-stage population with space-limited recruitment. SIAM J. Appl. Math. 55, 1675-1695 (1995) · Zbl 0847.34076 · doi:10.1137/S0036139993252839
[7] Wang, W., Mulone, G., Salemi, F., Salone, V.: Permanence and stability of a stage-structured predator-prey model. J. Math. Anal. Appl. 262, 499-528 (2001) · Zbl 0997.34069 · doi:10.1006/jmaa.2001.7543
[8] Xu, R., Chaplain, M., Davidson, F.: Global stability of Lotka-Volterra type predator-prey model with stage structure and time delay. Appl. Math. Comput. 159, 863-880 (2004) · Zbl 1056.92063
[9] Chen, F., Wang, H., Lin, Y., Chen, W.: Global stability of a stage-structured predator-prey system. Appl. Math. Comput. 223, 45-53 (2013) · Zbl 1329.92101
[10] Kar, T., Jana, S.: Stability and bifurcation analysis of a stage structured predator-prey model with time delay. Appl. Math. Comput. 219, 3779-3792 (2012) · Zbl 1311.92163
[11] Deng, L., Wang, X., Peng, M.: Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator. Appl. Math. Comput. 231, 214-230 (2014) · Zbl 1410.37071
[12] Xu, C., Yuan, S., Zhang, T.: Global dynamics of a predator-prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42-48 (2016) · Zbl 1351.34052 · doi:10.1016/j.aml.2016.06.013
[13] Ruan, S., Tang, Y., Zhang, W.: Versal unfoldings of predator-prey systems with ratio-dependent functional response. J. Differ. Equ. 249, 1410-1435 (2010) · Zbl 1205.34038 · doi:10.1016/j.jde.2010.06.015
[14] Hu, G., Li, X.: Stability and Hopf bifurcation for a delayed predator-prey model with dsease in the prey. Chaos Solitons Fractals 45, 229-237 (2012) · Zbl 1355.92089 · doi:10.1016/j.chaos.2011.11.011
[15] Faria, T., Oliveira, J.: Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. J. Differ. Equ. 244, 1049-1079 (2008) · Zbl 1146.34053 · doi:10.1016/j.jde.2007.12.005
[16] Hsu, S., Ruan, S., Yang, T.: Analysis of three species Lotka-Volterra food web models with omnivory. J. Math. Anal. Appl. 426, 659-687 (2015) · Zbl 1333.92046 · doi:10.1016/j.jmaa.2015.01.035
[17] Paul, P., Ghoshb, B., Kara, T.: Impact of species enrichment and fishing mortality in three species food chain models. Commun. Nonlinear Sci. Numer. Simul. 29, 208-223 (2015) · Zbl 1510.92265 · doi:10.1016/j.cnsns.2015.05.014
[18] Bologna, M., Chandía, K., Flores, J.: A non-linear mathematical model for a three species ecosystem: hippos in Lake Edward. J. Theor. Biol. 389, 83-87 (2016) · Zbl 1343.92392 · doi:10.1016/j.jtbi.2015.10.026
[19] Pang, P., Wang, M.: Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245-273 (2004) · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[20] Zhou, S., Li, W., Wang, G.: Persistence and global stability of positive periodic solutions of three species food chains with omnivory. J. Math. Anal. Appl. 324, 397-408 (2006) · Zbl 1101.92060 · doi:10.1016/j.jmaa.2005.12.021
[21] Gupta, R., Chandra, P.: Dynamical properties of a prey-predator-scavenger model with quadratic harvesting. Commun. Nonlinear Sci. Numer. Simul. 49, 202-214 (2017) · Zbl 1524.37081 · doi:10.1016/j.cnsns.2017.01.026
[22] Shen, C., You, M.: Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion. Appl. Math. Comput. 217, 1825-1830 (2010) · Zbl 1200.92045
[23] Cui, G., Yan, X.: Stability and bifurcation analysis on a three-species food chain system with two delays. Commun. Nonlinear Sci. Numer. Simul. 16, 3704-3720 (2011) · Zbl 1219.92062 · doi:10.1016/j.cnsns.2010.12.042
[24] Pei, Y., Guo, M., Li, C.: A delay digestion process with application in a three-species ecosystem. Commun. Nonlinear Sci. Numer. Simul. 16, 4365-4378 (2011) · Zbl 1219.92066 · doi:10.1016/j.cnsns.2011.03.018
[25] Mbava, W., Mugisha, J., Gonsalves, J.: Prey, predator and super-predator model with disease in the super-predator. Appl. Math. Comput. 297, 92-114 (2017) · Zbl 1411.92252
[26] Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101-2114 (2014) · Zbl 1297.34084 · doi:10.1016/j.jde.2013.12.015
[27] Huang, C., Cao, J., Xiao, M., Alsaedi, A., Alsaadi, F.: Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl. Math. Comput. 293, 293-310 (2017) · Zbl 1411.37068
[28] Huang, C., Gong, X., Chen, X., Wen, F.: Measuring and forecasting volatility in Chinese stock market using HAR-CJ-M model. Abstr. Appl. Anal. 2013, 1 (2013) · Zbl 1273.91401
[29] Huang, C., Peng, C., Chen, X., Wen, F.: Dynamics analysis of a class of delayed economic model. Abstr. Appl. Anal. 2013, 1 (2013) · Zbl 1273.91314
[30] Wang, Y., Cao, J.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput. 237, 474-488 (2014) · Zbl 1334.92433
[31] Huang, C., Cao, J.: Convergence dynamics of stochastic Cohen-Grossberg neural networks with unbounded distributed delays. IEEE Trans. Neural Netw. 22, 561-572 (2011) · doi:10.1109/TNN.2011.2109012
[32] Huang, C., Cao, J., Xiao, M., Alsaedi, A., Hayat, T.: Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Commun. Nonlinear Sci. Numer. Simul. 57, 1-13 (2018) · Zbl 1510.34154 · doi:10.1016/j.cnsns.2017.09.005
[33] Huang, C., Cao, J.: Impact of leakage delay on bifurcation in high-order fractional BAM neural networks. Neural Netw. 98, 223-235 (2018) · Zbl 1439.93004 · doi:10.1016/j.neunet.2017.11.020
[34] Huang, C., Cao, J., Cao, J.: Stability analysis of switched cellular neural networks: a mode-dependent average dwell time approach. Neural Netw. 82, 84-99 (2016) · Zbl 1429.93308 · doi:10.1016/j.neunet.2016.07.009
[35] Song, X., Chen, L.: Optimal harvesting and stability for a two-speices competitive system with stage structure. Math. Biosci. 170, 173-186 (2001) · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.