×

Stability and Hopf bifurcation in a delayed predator-prey system with stage structure for prey. (English) Zbl 1203.34132

The authors consider a predator-prey system of Lotka-Volterra type with time delays and stage structure for prey. By analyzing the corresponding characteristic equations, the local stability of the equilibria is investigated and Hopf bifurcations occurring at the positive equilibrium under some conditions are demonstrated. The mathematical tools which enable us to obtain sufficient conditions guaranteeing the global asymptotical stability of the equilibria, are the well-known Kamke comparison theorem and an iteration technique. Numerical simulations are carried out to illustrate the theoretical results.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D25 Population dynamics (general)
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations
Full Text: DOI

References:

[1] Yan, X.; Chu, Y., Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system, J. Comput. Appl. Math., 196, 198-210 (2006) · Zbl 1095.92071
[2] Faria, T., Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254, 433-463 (2001) · Zbl 0973.35034
[3] He, X., Stability and delays in a predator-prey system, J. Math. Anal. Appl., 198, 355-370 (1996) · Zbl 0873.34062
[4] Song, Y.; Peng, Y.; Wei, J., Bifurcations for a predator-prey system with two delays, J. Math. Anal. Appl., 337, 466-479 (2008) · Zbl 1132.34053
[5] Wang, W.; Chen, L., A predator-prey system with stage-structure for predator, Comput. Math. Appl., 33, 83-91 (1997)
[6] Huang, L.; Tang, M.; Yu, J., Qualitative analysis of Kolmogorov-type models of predator-prey systems, Math. Biosci., 130, 85-97 (1995) · Zbl 0836.92025
[7] Wang, W.; Ma, Z., Harmless delays for uniform persistence, J. Math. Anal. Appl., 158, 256-268 (1991) · Zbl 0731.34085
[8] Zhang, X.; Chen, L.; Neumann, A. U., The stage-structured predator-prey model and optimal harvesting policy, Math. Biosci., 168, 201-210 (2000) · Zbl 0961.92037
[9] Cui, J.; Takeuchi, Y., A predator-prey system with a stage structure for the prey, Math. Comput. Modelling, 44, 1126-1132 (2006) · Zbl 1132.92340
[10] Beretta, E.; Kuang, Y., Convergence results in a well-known delayed predator-prey system, J. Math. Anal. Appl., 204, 840-853 (1996) · Zbl 0876.92021
[11] Magnusson, K. G., Destabilizing effect of cannibalism on a structured predator-prey system, Math. Biosci., 155, 61-75 (1999) · Zbl 0943.92030
[12] Zhao, T.; Kuang, Y.; Smith, H. L., Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems, Nonlinear Anal., 28, 1373-1394 (1997) · Zbl 0872.34047
[13] Wang, W.; Mulone, G.; Salemi, F.; Salone, V., Permanence and stability of a stage-structured predator-prey model, J. Math. Anal. Appl., 262, 499-528 (2001) · Zbl 0997.34069
[14] Kuang, Y., Delay Differential Equation with Applications in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
[15] Xu, R.; Chaplain, M. A.J.; Davidson, F. A., Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay, Appl. Math. Comput., 159, 863-880 (2004) · Zbl 1056.92063
[16] Xu, R.; Ma, Z., Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure, Chaos Solitons Fractals, 38, 669-684 (2008) · Zbl 1146.34323
[17] Gao, S.; Chen, L.; Teng, Z., Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator, Appl. Math. Comput., 202, 721-729 (2008) · Zbl 1151.34067
[18] Yafia, R.; Adnani, F. E.; Alaoui, H. T., Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Nonlinear Anal. RWA, 9, 2055-2067 (2008) · Zbl 1156.34342
[19] Freedman, H. I.; Ruan, S., Uniform persistence in functional differential equations, J. Differential Equations, 115, 173-192 (1995) · Zbl 0814.34064
[20] Aiello, W. G.; Freedman, H. I., A time-delay model of single-species growth with stage structure, Math. Biosci., 101, 139-153 (1990) · Zbl 0719.92017
[21] Cui, J.; Chen, L.; Wang, W., The effect of dispersal on population growth with stage-structure, Comput. Math. Appl., 39, 91-102 (2000) · Zbl 0968.92018
[22] Dieudonné, J., Foundations of Modern Analysis (1960), Academic Press: Academic Press New York · Zbl 0100.04201
[23] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[24] Hu, H.; Huang, L., Stability and Hopf bifurcation analysis on a ring of four neurons with delays, Appl. Math. Comput., 213, 587-599 (2009) · Zbl 1175.34092
[25] Smith, H. L., Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, (Math. Surveys and Monographs, vol. 41 (1995), American Mathematical Society: American Mathematical Society Providence, Rhode Island) · Zbl 0821.34003
[26] Hirsch, M. W., Systems of differential equations which are competitive or cooperative. I: Limit sets, SIAM J. Math. Anal., 13, 167-179 (1982) · Zbl 0494.34017
[27] Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations (1965), D.C. Heath and Co.: D.C. Heath and Co. Boston · Zbl 0154.09301
[28] Walter, W., Differential inequalities and maximum principles: Theory, new methods and applications, Nonlinear Anal. TMA, 30, 4695-4711 (1997) · Zbl 0893.35014
[29] Huang, C.; He, Y.; Huang, L.; Yuan, Z., Hopf bifurcation analysis of two neurons with three delays, Nonlinear Anal. RWA, 8, 903-921 (2007) · Zbl 1149.34046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.