×

An edge-based method for the incompressible Navier-Stokes equations on polygonal meshes. (English) Zbl 0989.76054

The authors present an edge-based finite volume method for solving nonstationary incompressible Navier-Stokes equations. The method is an extension of the one proposed by M. Thomadakis and M. Leschziner [Int. J. Numer. Methods Fluids 22, No. 7, 581-601 (1996; Zbl 0865.76069)], with another coupling of pressure and velocity. For time integration, an implicit two-stage Runge-Kutta scheme is used. Numerical results are shown for the buoyancy-driven cavity flow, decaying vortex flow, lid-driven cavity flow, impulsively started circular cylinder flow, and for the vortex shedding from a circular cylinder at different Reynolds numbers.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 0865.76069
Full Text: DOI

References:

[1] Venkatakrishnan, V., Perspective on unstructured grid flow solvers, AIAA J., 34, 533 (1996) · Zbl 0896.76002
[2] Mavriplis, D. J., Unstructured grid techniques, Annu. Rev. Fluid Mech., 29, 473 (1997)
[3] Barth, T. J., Recent Developments in High Order k-Exact Reconstruction on Unstructured Meshes (1993)
[4] Luo, H.; Baum, J. D.; Lohner, R., dge-based finite element scheme for the Euler equations, AIAA J., 32, 1183 (1994) · Zbl 0810.76037
[5] Gresho, P. M.; Sani, R. L., On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 7, 1111 (1987) · Zbl 0644.76025
[6] Thomadakis, M.; Leschziner, M., A pressure-correction method for the solution of incompressible viscous flows on unstructured grids, Int. J. Numer. Meth. Fluids, 22, 581 (1996) · Zbl 0865.76069
[7] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.; S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980. · Zbl 0521.76003
[8] Rida, S.; McKenty, F.; Meng, F. L.; Reggio, M., A staggered control volume scheme for unstructured triangular grids, Int. J. Numer. Meth. Fluids, 25, 697 (1997) · Zbl 0907.76049
[9] Jyotsna, R.; Vanka, S. P., Multigrid calculation of steady, viscous flow in a triangular cavity, J. Comput. Phys., 122, 107 (1995) · Zbl 0834.76068
[10] Kobayashi, M. H.; Pereira, J. M.C.; Pereira, J. C.F., A conservative finite-volume second-order-accurate projection method on hybrid unstructured grids, J. Comput. Phys., 150, 40 (1999) · Zbl 0934.76049
[11] Hirsch, C., Numerical Computation of Internal and External Flows, 1, 24-25 (1988) · Zbl 0662.76001
[12] Strikwerda, J., Finite difference methods for the Stokes and Navier-Stokes equations, SIAM J. Sci. Stat. Comput., 5, 56 (1984) · Zbl 0546.76052
[13] Choi, Y. H.; Merkle, C. L., The application of preconditioning in viscous flows, J. Comput. Phys., 105, 207 (1993) · Zbl 0768.76032
[14] Sotiropoulos, F.; Abdallah, S., The discrete continuity equation in primitive variable solutions of incompressible flow, J. Comput. Phys., 95, 212 (1991) · Zbl 0725.76058
[15] Rhie, C. M.; Chow, W. L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21, 1525 (1983) · Zbl 0528.76044
[16] Barth, T. J.; Jespersen, D. C., The Design and Application of Upwind Schemes on Unstructured Meshes (1989)
[17] Marx, Y. P., Time integration schemes for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 112, 182 (1994) · Zbl 0798.76054
[18] Shih, T. M.; Tan, C. H.; Hwang, B. C., Effects of grid staggering on numerical schemes, Int. J. Numer. Meth. Fluids, 9, 193 (1989) · Zbl 0661.76024
[19] Rebay, S., Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm, J. Comput. Phys., 106, 125 (1993) · Zbl 0777.65064
[20] Taylor, G. I., On the decay of vortices in a viscous fluid, Philos. Mag., 46, 671 (1923) · JFM 49.0607.02
[21] Braza, M.; Chassaing, P.; Ha Minh, H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, 79 (1986) · Zbl 0596.76047
[22] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387 (1982) · Zbl 0511.76031
[23] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow, J. Fluid Mech., 79, 257 (1977)
[24] Rosenfeld, M.; Kwak, D.; Vinokur, M., A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems, J. Comput. Phys., 94, 102 (1991) · Zbl 0718.76079
[25] S. E. Rogers, NASA Ames Research Center, Moffett Field, CA, private communication, 1999.; S. E. Rogers, NASA Ames Research Center, Moffett Field, CA, private communication, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.