×

A fractional step solution method for the unsteady incompressible Navier- Stokes equations in generalized coordinate systems. (English) Zbl 0718.76079

Summary: A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell.
The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with a consistent approximation of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Kwak, D.; Chang, J. L.; Shanks, S. P.; Chakravarthy, S., AIAA J., 24, No. 3, 390 (1986) · Zbl 0587.76044
[2] Rosenfeld, M.; Israeli, M.; Wolfshtein, M., J. Comput. Phys., 88, 255 (1990) · Zbl 0697.76051
[3] Shyy, W.; Tong, S. S.; Correa, S. M., Numer. Heat Transfer, 8, 99 (1985) · Zbl 0567.76101
[4] Hashiguchi, M.; Ohta, T.; Kuwahara, K., Computational Study of Aerodynamic Behavior of a Car Configuration, AIAA Paper 87-1386 (1987), (unpublished)
[5] Lecointe, Y.; Piquet, J., Comput. Fluids, 12, 255 (1984) · Zbl 0619.76023
[6] Rogers, S. E.; Kwak, D., An Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations, AIAA Paper 88-2583 (1988), (unpublished)
[7] Rogers, S. E.; Kwak, D., Numerical Solution of the Incompressible Navier-Stokes Equations for Steady-State and Time-Dependent Problems, AIAA Paper 89-0463 (1989), (unpublished)
[8] Merkle, C. L.; Athavale, M., Time-Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility, AIAA Paper 97-1137 (1987), (unpublished)
[9] Chorin, A. J., Math. Comput., 22, 745 (1968) · Zbl 0198.50103
[10] Gresho, M. P.; Sani, R. L., Int. J. Numer. Methods Fluids, 7, 1111 (1987) · Zbl 0644.76025
[11] Kim, J.; Moin, P., J. Comput. Phys., 59, 308 (1985) · Zbl 0582.76038
[12] Orszag, S. A.; Israeli, M.; Deville, M. O., J. Sci. Comput., 1, 75 (1986) · Zbl 0648.76023
[13] Patankar, S. V.; Spalding, D. B., Int. J. Heat Mass Transfer, 15, 1787 (1972) · Zbl 0246.76080
[14] Harlow, F. H.; Welsh, J. E., Phys. Fluids, 8, 2182 (1965) · Zbl 1180.76043
[15] Vinokur, M., J. Comput. Phys., 81, 1 (1989) · Zbl 0662.76039
[16] Rosenfeld, M.; Kwak, D., Numerical Solution of Unsteady Incompressible Viscous Flows in Generalized Moving Coordinate Systems, AIAA Paper 89-0466 (1989), (unpublished)
[17] Beam, R. M.; Warming, R. F., SIAM J. Sci. Statist. Comput., 1, 131 (1980) · Zbl 0462.65060
[18] Rosenfeld, M.; Kwak, D.; Vinokur, M., Development of an Accurate Solution Method for the Unsteady Three-Dimensional and Incompressible Navier-Stokes Equations in Generalized Coordinate Systems (1989), NASA, TM, (unpublished)
[19] Peyret, R.; Taylor, T. D., Computational Methods for Fluid Flow, ((1983), Springer-Verlag: Springer-Verlag New York), 786 · Zbl 0514.76001
[20] Braza, M.; Chassaing, P.; Haminh, H., J. Fluid Mech., 165, 79 (1986) · Zbl 0596.76047
[21] Rosenfeld, M.; Kwak, D., (Proc. of the Eleventh International Conferece on Numerical Methods in Fluid Dynamics. Proc. of the Eleventh International Conferece on Numerical Methods in Fluid Dynamics, Williamsburg, Virginia, USA, 1988 (1989), Springer-Verlag)
[22] Cazalbou, J. B.; Braza, M.; Mihn, H. H., (Taylor, C.; etal., Proceedings, 3th Int. Conf on Numerical Methods in Laminar and Turbulent Flow. Proceedings, 3th Int. Conf on Numerical Methods in Laminar and Turbulent Flow, Seattle, Washington, 1983 (1983), Pineridge Press: Pineridge Press UK), 786 · Zbl 0557.76034
[23] Hwang, D. P.; Huynh, H. T., (Taylor, C.; etal., Proceedings, 5th Int. Con. on Numerical Methods in Laminar and Turbulent Flow. Proceedings, 5th Int. Con. on Numerical Methods in Laminar and Turbulent Flow, Montreal, Canada, 1987 (1987), Pineridge Press: Pineridge Press UK), 244
[24] Fuchs, L.; Tillmark, N., Int. J. Numer. Methods Fluids, 5, 311 (1985)
[25] Collins, W. M.; Dennis, S. C.R., J. Fluid Mech., 60, 105 (1973) · Zbl 0266.76022
[26] Coutanceau, M.; Bouard, R., J. Fluid Mech., 79, 257 (1977)
[27] Loc, T. P., J. Fluid Mech., 100, 111 (1980)
[28] Bouard, R.; Coutanceau, M., J. Fluid Mech., 101, 583 (1980)
[29] Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913 (1953), (unpublished)
[30] S.E. Rogers, NASA Ames Research Center, Moffett Field, CA, priate communication (1989).; S.E. Rogers, NASA Ames Research Center, Moffett Field, CA, priate communication (1989).
[31] Gerrard, J. H., Philos. Trans. Roy. Soc., 288, 351 (1978)
[32] Wille, R., Adv. Appl. Mech., 6, 273 (1960) · Zbl 0103.42506
[33] Humphrey, J. A.C.; Taylor, A. M.K.; Whitelaw, J. H., J. Fluid Mech., 83, 509 (1977) · Zbl 0367.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.