×

A stabilizer-free weak Galerkin finite element method with Alikhanov formula on nonuniform mesh for a linear reaction-subdiffusion problem. (English) Zbl 1538.65377

Summary: We develop a temporally second-order stabilizer-free weak Galerkin (SFWG) finite element method with unequal time steps for reaction-subdiffusion equation in multiple space dimensions. In consideration of initial singularity of the solution, we prove a sharp error estimate on nonuniform time steps by two tools: discrete fractional Grönwall inequality and error convolution structure analysis. Furthermore, the fully discrete scheme achieves second-order accuracy in time by employing the graded temporal partition. Several numerical experiments are included to confirm the sharpness of theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261
[2] Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272, 368-379 (2002) · Zbl 1070.49013
[3] Berkowitz, B.; Scher, H.; Silliman, S., Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res., 36, 1, 149-158 (2000)
[4] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423 (2006)
[5] Chen, C.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equations, SIAM J. Sci. Comput., 32, 4, 1740-1760 (2010) · Zbl 1217.26011
[6] Chen, W.; Wang, F.; Wang, Y., Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36, 2, 897-921 (2016) · Zbl 1433.76075
[7] Chen, L.; Wang, J.; Wang, Y.; Ye, X., An auxiliary space multigrid preconditioner for the weak Galerkin method, Comput. Math. Appl., 70, 4, 330-344 (2014) · Zbl 1443.65319
[8] Diethelm, K.; Freed, A. D., On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, (Proceedings of the Second Conference on Scientific Computing in Chemical Engineering (1999), Springer: Springer Heidelberg), 217-224
[9] Gao, G.; Sun, Z.; Zhang, H., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088
[10] Gao, F.; Wang, X., A modified weak Galerkin finite element method for a class of parabolic problems, J. Comput. Appl. Math., 271, 1-19 (2014) · Zbl 1321.65154
[11] Gu, X.; Wu, S., A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417, Article 109576 pp. (2020) · Zbl 1437.65237
[12] Yan, Y.; Sun, Z.; Zhang, J., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys., 22, 4, 1028-1048 (2017) · Zbl 1488.65306
[13] Lin, G.; Liu, J.; Mu, L.; Ye, X., Weak Galerkin finite element methods for Darcy flow: anisotropy and heterogeneity, J. Comput. Phys., 276, 422-437 (2014) · Zbl 1349.76234
[14] Li, X.; Liao, H.; Zhang, L., A second-order fast compact scheme with unequal time-steps for subdiffusion problems, Numer. Algorithms, 86, 3, 1011-1039 (2021) · Zbl 1466.65072
[15] Liao, H. L.; Li, D.; Zhang, J., Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026
[16] Liao, H. L.; McLean, W.; Zhang, J., A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem, Commun. Comput. Phys., 30, 2, 567-601 (2021) · Zbl 1473.65110
[17] Liao, H. L.; McLean, W.; Zhang, J. W., A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57, 218-237 (2019) · Zbl 1414.65008
[18] Lin, Y. M.; Xu, C. J., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[19] Li, X.; Xu, Q.; Zhu, A., Weak Galerkin mixed finite element methods for parabolic equations with memory, Discrete Contin. Dyn. Syst. Ser. S, 12, 3, 513-531 (2019) · Zbl 1422.65400
[20] Metzler, R.; Klafter, J., Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys. Rev. E, 61, 6, 6308 (2000)
[21] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[22] Mu, L.; Wang, J. P.; Ye, X., A new weak Galerkin finite element methods for Helmholtz equation, IMA J. Numer. Anal., 35, 3, 1228-1255 (2014) · Zbl 1323.65116
[23] Mu, L.; Wang, J.; Ye, X.; Zhao, S., A numerical study on the weak Galerkin method for the Helmholtz equation, Commun. Comput. Phys., 15, 5, 1461-1479 (2014) · Zbl 1388.65156
[24] Oldham, K. B.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), Academic Press: Academic Press New York · Zbl 0292.26011
[25] Stynes, M., Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19, 1554-1562 (2016) · Zbl 1353.35306
[26] Stynes, M.; O’Riordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[27] Sun, Z. Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[28] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447 (2011) · Zbl 1219.35367
[29] Sun, H.; Zhang, Y.; Chen, W.; Reeves, D. M., Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157, 47-58 (2014)
[30] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, vol. 25 (2007), Springer Science and Business Media
[31] Wang, H.; Du, N., A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys., 240, 49-57 (2013) · Zbl 1287.65100
[32] Wang, H.; Du, N., Fast solution methods for space-fractional diffusion equations, J. Comput. Appl. Math., 255, 376-383 (2014) · Zbl 1291.65324
[33] Wang, X.; Gao, F.; Liu, Y.; Sun, Z., A weak Galerkin finite element method for high dimensional time-fractional diffusion equation, Appl. Math. Comput., 386, Article 125524 pp. (2020) · Zbl 1474.65370
[34] Wang, J.; Ye, X., A weak Galerkin finite element for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[35] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83, 289, 2101-2126 (2014) · Zbl 1308.65202
[36] Wang, H.; Yang, D.; Zhu, S. F., A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations, Comput. Methods Appl. Mech. Eng., 290, 45-56 (2015) · Zbl 1425.65183
[37] Yang, Z.; Zheng, X.; Wang, H., A variably distributed-order time-fractional diffusion equation: analysis and approximation, Comput. Methods Appl. Mech. Eng., 367, 113-118 (2020) · Zbl 1442.76074
[38] Ye, X.; Zhang, S., A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numer. Anal., 58, 2572-2588 (2020) · Zbl 1452.65362
[39] Ye, X.; Zhang, S., A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371, Article 112699 pp. (2020) · Zbl 1434.65285
[40] Zhao, Y.; Gu, X.; Ostermann, A., A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88, 1, 1-22 (2021) · Zbl 1468.76055
[41] Zhou, S.; Gao, F.; Li, B.; Sun, Z., Weak Galerkin finite element method with second-order accuracy in time for parabolic problems, Appl. Math. Lett., 90, 118-123 (2019) · Zbl 1410.65387
[42] Zhang, Y. N.; Sun, Z. Z.; Liao, H. L., Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.