×

SUPG-stabilized stabilization-free VEM: a numerical investigation. (English) Zbl 07889305

Summary: We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations-i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term-of advection-diffusion problems in the advection-dominated regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We present numerical tests that assess the robustness of the proposed scheme and compare it with a standard Virtual Element Method.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Software:

PolyMesher

References:

[1] D. A. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Math., 353 (2015), 31-34. https://doi.org/10.1016/j.crma.2014.10.013 · Zbl 1308.65196 · doi:10.1016/j.crma.2014.10.013
[2] M. Cicuttin, A. Ern, N. Pignet, Hybrid high-order methods: a primer with application to solid mechanics, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-81477-9 · Zbl 1475.74002
[3] F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Meth. Appl. Sci., 15 (2005), 1533-1551. https://doi.org/10.1142/S0218202505000832 · Zbl 1083.65099 · doi:10.1142/S0218202505000832
[4] N. Sukumar, A. Tabarraei, Conforming polygonal finite elements, Int. J. Numer. Meth. Eng., 61 (2004), 2045-2066. https://doi.org/10.1002/nme.1141 · Zbl 1073.65563 · doi:10.1002/nme.1141
[5] A. Cangiani, Z. Dong, E. H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-67673-9 · Zbl 1382.65307
[6] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, A. Russo, Basic principles of virtual element methods, Math. Mod. Meth. Appl. Sci., 23 (2013), 199-214. https://doi.org/10.1142/S0218202512500492 · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[7] L. Beirão da Veiga, F. Brezzi, L. D. Marini, Virtual Elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), 794-812. https://doi.org/10.1137/120874746 · Zbl 1268.74010 · doi:10.1137/120874746
[8] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker’s Guide to the Virtual Element Method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541-1573. https://doi.org/10.1142/S021820251440003X · Zbl 1291.65336 · doi:10.1142/S021820251440003X
[9] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Virtual Element Methods for general second-order elliptic problems on polygonal meshes, Math. Mod. Meth. Appl. Sci., 26 (2015), 729-750. https://doi.org/10.1142/S0218202516500160 · Zbl 1332.65162 · doi:10.1142/S0218202516500160
[10] L. Beirão da Veiga, C. Lovadina, D. Mora, A Virtual Element Method for elastic and inelastic problems on polytope meshes, Comput. Meth. Appl. Mech. Eng., 295 (2015), 327-346. https://doi.org/10.1016/j.cma.2015.07.013 · Zbl 1423.74120 · doi:10.1016/j.cma.2015.07.013
[11] E. Artioli, S. de Miranda, C. Lovadina, L. Patruno, A stress/displacement Virtual Element method for plane elasticity problems, Comput. Meth. Appl. Mech. Eng., 325 (2017), 155-174. https://doi.org/10.1016/j.cma.2017.06.036 · Zbl 1439.74040 · doi:10.1016/j.cma.2017.06.036
[12] F. Dassi, C. Lovadina, M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Comput. Meth. Appl. Mech. Eng., 364 (2020), 112910. https://doi.org/10.1016/j.cma.2020.112910 · Zbl 1442.65358 · doi:10.1016/j.cma.2020.112910
[13] F. Dassi, C. Lovadina, M. Visinoni, Hybridization of the virtual element method for linear elasticity problems, Math. Mod. Meth. Appl. Sci., 31 (2021), 2979-3008. https://doi.org/10.1142/S0218202521500676 · Zbl 1480.65331 · doi:10.1142/S0218202521500676
[14] M. F. Benedetto, S. Berrone, A. Borio, The Virtual Element Method for underground flow simulations in fractured media, In: G. Ventura, E. Benvenuti, Advances in discretization methods, SEMA SIMAI Springer Series, Cham: Springer, 12 (2016), 167-186. https://doi.org/10.1007/978-3-319-41246-7_8 · Zbl 1371.74214
[15] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306 (2016), 148-166. https://doi.org/10.1016/j.jcp.2015.11.034 · Zbl 1351.76048 · doi:10.1016/j.jcp.2015.11.034
[16] M. F. Benedetto, A. Borio, A. Scialò, Mixed Virtual Elements for discrete fracture network simulations, Finite Elem. Anal. Des., 134 (2017), 55-67. https://doi.org/10.1016/j.finel.2017.05.011 · doi:10.1016/j.finel.2017.05.011
[17] S. Berrone, M. Busetto, F. Vicini, Virtual Element simulation of two-phase flow of immiscible fluids in Discrete Fracture Networks, J. Comput. Phys., 473 (2023), 111735. https://doi.org/10.1016/j.jcp.2022.111735 · Zbl 07625404 · doi:10.1016/j.jcp.2022.111735
[18] A. Borio, F. P. Hamon, N. Castelletto, J. A. White, R. R. Settgast, Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics, Comput. Methods Appl. Mech. Eng., 383 (2021), 113917. https://doi.org/10.1016/j.cma.2021.113917 · Zbl 1506.74390 · doi:10.1016/j.cma.2021.113917
[19] S. Berrone, M. Busetto, A virtual element method for the two-phase flow of immiscible fluids in porous media, Comput. Geosci., 26 (2022), 195-216. https://doi.org/10.1007/s10596-021-10116-4 · Zbl 1484.65200 · doi:10.1007/s10596-021-10116-4
[20] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 311 (2016), 18-40. https://doi.org/10.1016/j.cma.2016.07.043 · Zbl 1439.76051 · doi:10.1016/j.cma.2016.07.043
[21] S. Berrone, A. Borio, G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 340 (2018), 500-529. https://doi.org/10.1016/j.cma.2018.05.027 · Zbl 1440.65182 · doi:10.1016/j.cma.2018.05.027
[22] S. Berrone, A. Borio, F. Marcon, Lowest order stabilization free Virtual Element Method for the Poisson equation, arXiv, 2021. https://doi.org/10.48550/arXiv.2103.16896 · doi:10.48550/arXiv.2103.16896
[23] A. Borio, C. Lovadina, F. Marcon, M. Visinoni, A lowest order stabilization-free mixed Virtual Element Method, Comput. Math. Appl., 160 (2024), 161-170. https://doi.org/10.1016/j.camwa.2024.02.024 · Zbl 07824650 · doi:10.1016/j.camwa.2024.02.024
[24] S. Berrone, A. Borio, F. Marcon, Comparison of standard and stabilization free Virtual Elements on anisotropic elliptic problems, Appl. Math. Lett., 129 (2022), 107971. https://doi.org/10.1016/j.aml.2022.107971 · Zbl 1487.65176 · doi:10.1016/j.aml.2022.107971
[25] S. Berrone, A. Borio, F. Marcon, G. Teora, A first-order stabilization-free Virtual Element Method, Appl. Math. Lett., 142 (2023), 108641. https://doi.org/10.1016/j.aml.2023.108641 · Zbl 07708812 · doi:10.1016/j.aml.2023.108641
[26] A. M. D’Altri, S. de Miranda, L. Patruno, E. Sacco, An enhanced VEM formulation for plane elasticity, Comput. Methods Appl. Mech. Eng., 376 (2021), 113663. https://doi.org/10.1016/j.cma.2020.113663 · Zbl 1506.74397 · doi:10.1016/j.cma.2020.113663
[27] A. Chen, N. Sukumar, Stabilization-free virtual element method for plane elasticity, Comput. Math. Appl., 138 (2023), 88-105. https://doi.org/10.1016/j.camwa.2023.03.002 · Zbl 1538.65499 · doi:10.1016/j.camwa.2023.03.002
[28] A. Chen, N. Sukumar, Stabilization-free serendipity virtual element method for plane elasticity, Comput. Methods Appl. Mech. Eng., 404 (2023), 115784. https://doi.org/10.1016/j.cma.2022.115784 · Zbl 07644857 · doi:10.1016/j.cma.2022.115784
[29] B. B. Xu, F. Peng, P. Wriggers, Stabilization-free virtual element method for finite strain applications, Comput. Methods Appl. Mech. Eng., 417 (2023), 116555. https://doi.org/10.1016/j.cma.2023.116555 · Zbl 1536.74287 · doi:10.1016/j.cma.2023.116555
[30] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0 · Zbl 1135.65042
[31] L. P. Franca, S. L. Frey, T. J. R. Hughes, Stabilized finite element methods: Ⅰ. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 95 (1992), 253-276. https://doi.org/10.1016/0045-7825(92)90143-8 · Zbl 0759.76040 · doi:10.1016/0045-7825(92)90143-8
[32] L. Beirão da Veiga, F. Dassi, C. Lovadina, G. Vacca, SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis, ESAIM: M2AN, 55 (2021), 2233-2258. https://doi.org/10.1051/m2an/2021050 · Zbl 1490.65267 · doi:10.1051/m2an/2021050
[33] A. Cangiani, E. H. Georgoulis, T. Pryer, O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857-893. https://doi.org/10.1007/s00211-017-0891-9 · Zbl 1384.65079 · doi:10.1007/s00211-017-0891-9
[34] P. Clément, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., 9 (1975), 77-84. https://doi.org/10.1051/m2an/197509R200771 · Zbl 0368.65008 · doi:10.1051/m2an/197509R200771
[35] C. Talischi, G. H. Paulino, A. Pereira, I. F. M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc. Optim., 45 (2012), 309-328. https://doi.org/10.1007/s00158-011-0706-z · Zbl 1274.74401 · doi:10.1007/s00158-011-0706-z
[36] P. F. Antonietti, S. Berrone, A. Borio, A. D’Auria, M. Verani, S. Weisser, Anisotropic a posteriori error estimate for the virtual element method, IMA J. Numer. Anal., 42 (2022), 1273-1312. https://doi.org/10.1093/imanum/drab001 · Zbl 1501.65101 · doi:10.1093/imanum/drab001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.