×

Existence and stability of steady noncharacteristic solutions on a finite interval of full compressible Navier-Stokes equations. (Existence et stabilité de solutions non caractéristiques et stationnaires des équations de Navier-Stokes non isentropiques sur un intervalle.) (English. French summary) Zbl 1541.35337

The 1D compressible nonsteady Navier-Stokes equations are considered, with noncharacteristic inflow-outflow boundary conditions. The existence, uniqueness, and stability of steady solutions of the full (nonisentropic) above system on a bounded interval are studied, for large-amplitude data. The spectral stability is studied by using numerical Evans function investigations – see [B. Barker et al., SIAM J. Appl. Dyn. Syst. 17, No. 2, 1766–1785 (2018; Zbl 1395.65131)]. Important tools are the Morse index of the linearized operator about the wave, the Brouwer degree and a “Cauchy-to-boundary value” map \(\Psi\). Roughly speaking, \(\Psi\) realizes the correspondence between the conditions of the problem and the solution – see (1.7), (1.8). The properties of \(\Psi\) and the existence theorem are given in Sections 2–3. The uniqueness is proved in Proposition 4.1: if \(\Psi\) is bijective for some particular data, then we have uniqueness; otherwise “there is at least one choice of data possessing multiple solutions”. I would say that, to some extent, the conclusion seems to be contained in the hypothesis (which is very strong). The spectral stability and the Evans function are explained, by using the stability index. Numerical results for simple gases are given in Section 6. The computation of the Evans function is obtained with the package STABLAB. Very interesting plots illustrate the obtained results. Some very useful numerical and analytical examples concerning the non uniqueness cases are given in the last section, where an abstract bifurcation result is also obtained. Details regarding the MATLAB-based package STABLAB (used here) are given in the appendix – see [B. Barker et al., Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170184, 25 p. (2018; Zbl 1402.65052)].

MSC:

35Q30 Navier-Stokes equations
76N06 Compressible Navier-Stokes equations
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35P05 General topics in linear spectral theory for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Alexander, J.; Gardner, R.; Jones, C., A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410, 167-212, 1990 · Zbl 0705.35070
[2] Barker, B., Evans function computation, 2009
[3] Barker, B.; Freistühler, H.; Zumbrun, K., Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability, Arch. Ration. Mech. Anal., 217, 1, 309-372, 2015 · Zbl 1329.35240 · doi:10.1007/s00205-014-0838-6
[4] Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J., Evans function computation for the stability of travelling waves, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci., 376, 2117, 2018 · Zbl 1402.65052 · doi:10.1098/rsta.2017.0184
[5] Barker, B.; Humpherys, J.; Lyng, G.; Zumbrun, K., Viscous hyperstabilization of detonation waves in one space dimension, SIAM J. Appl. Math., 75, 3, 885-906, 2015 · Zbl 1320.35271 · doi:10.1137/140980223
[6] Barker, B.; Humpherys, J.; Lyng, G.; Zumbrun, K., Viscous hyperstabilization of detonation waves in one space dimension, SIAM J. Appl. Math., 75, 3, 885-906, 2015 · Zbl 1320.35271 · doi:10.1137/140980223
[7] Barker, B.; Humpherys, J.; Lyng, G.; Zumbrun, K., Balanced flux formulations for multidimensional Evans-function computations for viscous shocks, Q. Appl. Math., 76, 3, 531-545, 2018 · Zbl 1398.35160 · doi:10.1090/qam/1492
[8] Barker, B.; Humpherys, J.; Lyng, G.; Zumbrun, K., Euler versus Lagrange: the role of coordinates in practical Evans-function computations, SIAM J. Appl. Dyn. Syst., 17, 2, 1766-1785, 2018 · Zbl 1395.65131 · doi:10.1137/17M113770X
[9] Barker, B.; Humpherys, J.; Lytle, J.; Zumbrun, K., A MATLAB-based numerical library for Evans function computation, 2015
[10] Barker, B.; Humpherys, J.; Zumbrun, K., One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, J. Differ. Equations, 249, 9, 2175-2213, 2010 · Zbl 1402.76051 · doi:10.1016/j.jde.2010.07.019
[11] Barker, B.; Johnson, M.; Noble, P.; Rodrigues, M.; Zumbrun, K., Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit, J. Nonlinear Sci., 27, 1, 285-342, 2017 · Zbl 1373.35040 · doi:10.1007/s00332-016-9333-6
[12] Barker, B.; Lewicka, M.; Zumbrun, K., Existence and stability of viscoelastic shock profiles, Arch. Ration. Mech. Anal., 200, 2, 491-532, 2011 · Zbl 1233.35023 · doi:10.1007/s00205-010-0363-1
[13] Barker, B.; Monteiro, R.; Zumbrun, K., Transverse bifurcation of viscous slow MHD shocks, Physica D, 420, 2021 · Zbl 1491.76032 · doi:10.1016/j.physd.2021.132857
[14] Barker, B. N., Stability of MHD Shock Waves, 2020
[15] Batchelor, G. K., An introduction to fluid dynamics, 1999, Cambridge University Press, Cambridge · Zbl 0958.76001
[16] Brouwer, L. E. J., Über Abbildung von Mannigfaltigkeiten, Math. Ann., 71, 1, 97-115, 1911 · JFM 42.0417.01 · doi:10.1007/bf01456931
[17] Dinca, G.; Mawhin, J., Brouwer degree, the Core of Nonlinear Analysis, 95, 2021, Birkhäuser, Basel · Zbl 07301627 · doi:10.1007/978-3-030-63230-4
[18] Drury, L., Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys., 37, 1, 133-139, 1980 · Zbl 0448.65057 · doi:10.1016/0021-9991(80)90008-X
[19] F., Ozbag; Schecter, S., Stability of combustion waves in a simplified gas-solid combustion model in porous media, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci., 376, 2117, 2018 · Zbl 1402.80005 · doi:10.1098/rsta.2017.0185
[20] Gardner, R. A.; Zumbrun, K., The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51, 7, 797-855, 1998 · Zbl 0933.35136 · doi:10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
[21] Ghazaryan, A.; Lafortune, S.; Manukian, V., Spectral Analysis of Fronts in a Marangoni-Driven Thin Liquid Film Flow Down a Slope, SIAM J. Appl. Math., 80, 1, 95-118, 2020 · Zbl 1435.76027 · doi:10.1137/19m1251977
[22] Hirsch, M. W., Differential topology, 33, 1994, Springer-Verlag, New York
[23] Humpherys, J.; Lyng, G.; Zumbrun, K., Spectral stability of ideal-gas shock layers, Arch. Ration. Mech. Anal., 194, 3, 1029-1079, 2009 · Zbl 1422.76122 · doi:10.1007/s00205-008-0195-4
[24] Humpherys, J.; Lyng, G.; Zumbrun, K., Multidimensional stability of large-amplitude Navier-Stokes shocks, Arch. Ration. Mech. Anal., 226, 3, 923-973, 2017 · Zbl 1386.35326 · doi:10.1007/s00205-017-1147-7
[25] Humpherys, J.; Zumbrun, K., An efficient shooting algorithm for Evans function calculations in large systems, Phys. D, 220, 2, 116-126, 2006 · Zbl 1101.65082 · doi:10.1016/j.physd.2006.07.003
[26] Kawashima, D.; Shizuta, Y., On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J. (2), 40, 3, 449-464, 1988 · Zbl 0699.35171 · doi:10.2748/tmj/1178227986
[27] Kierzenka, J. A.; Shampine, L. F., A BVP solver that controls residual and error, J. Numer. Anal. Ind. Appl. Math., 3, 1-2, 27-41, 2008 · Zbl 1154.65063
[28] Kweon, J. R.; Kellogg, R. B., Compressible Navier-Stokes equations in a bounded domain with inflow boundary condition, SIAM J. Math. Anal., 28, 1, 94-108, 1997 · Zbl 0866.35092 · doi:10.1137/S0036141095284254
[29] Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, 11, 1973, Society for Industrial and Applied Mathematics, Philadelphia, Pa. · Zbl 0268.35062 · doi:10.1137/1.9781611970562
[30] Lions, P.-L., Mathematical topics in fluid mechanics. Vol. 2 Compressible models, 10, 1998, The Clarendon Press; Oxford University Press, New York · Zbl 0908.76004
[31] Lytle, J., Stability of Planar Detonations in the Reactive Navier-Stokes Equations, 2017
[32] Melinand, B.; Zumbrun, K., Existence and stability of steady compressible Navier-Stokes solutions on a finite interval with noncharacteristic boundary conditions, Physica D, 394, 16-25, 2019 · Zbl 1451.76106 · doi:10.1016/j.physd.2019.01.006
[33] Melinand, B.; Zumbrun, Z., Existence and behavior of steady solutions on an interval for general hyperbolic-parabolic systems of conservation laws, 2021
[34] Milnor, J. W., Topology from the differentiable viewpoint, 1965, The University Press of Virginia, Charlottesville, Va. · Zbl 0136.20402
[35] Prasolov, V. V., Elements of combinatorial and differential topology, 74, 2006, American Mathematical Society, Providence, RI · Zbl 1098.57001 · doi:10.1090/gsm/074
[36] Rousset, F., Inviscid boundary conditions and stability of viscous boundary layers, Asymptot. Anal., 26, 3-4, 285-306, 2001 · Zbl 0977.35081
[37] Serre, D.; Zumbrun, K., Boundary layer stability in real vanishing viscosity limit, Comm. Math. Phys., 221, 2, 267-292, 2001 · Zbl 0988.35028 · doi:10.1007/s002200100486
[38] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18, 1, 1-22, 1997 · Zbl 0868.65040 · doi:10.1137/s1064827594276424
[39] Texier, B.; Zumbrun, K., Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions, Comm. Math. Phys., 302, 1, 1-51, 2011 · Zbl 1217.35138 · doi:10.1007/s00220-010-1175-8
[40] Zumbrun, K., Advances in the theory of shock waves, 47, Multidimensional stability of planar viscous shock waves, 307-516, 2001, Birkhäuser Boston, Boston, MA · Zbl 0989.35089 · doi:10.1007/978-1-4612-0193-9_5
[41] Zumbrun, K., Stability of noncharacteristic boundary layers in the standing-shock limit, Trans. Amer. Math. Soc., 362, 12, 6397-6424, 2010 · Zbl 1218.35180 · doi:10.1090/S0002-9947-2010-05213-4
[42] Zumbrun, K.; Serre, D., Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48, 3, 937-992, 1999 · Zbl 0944.76027 · doi:10.1512/iumj.1999.48.1765
[43] Zumbun, K.; Howard, P., Errata to: “Pointwise semigroup methods, and stability of viscous shock waves” [Indiana Univ. Math. J. (47) (1998), no. 3, 741-871; MR1665788 (99m:35157)], Indiana Univ. Math. J., 51, 4, 1017-1021, 2002 · Zbl 0928.35018 · doi:10.1512/iumj.2002.51.2410
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.