×

On stability and instability of \(C^{1, \alpha}\) singular solutions to the 3D Euler and 2D Boussinesq equations. (English) Zbl 1541.35359

Summary: Singularity formation of the 3D incompressible Euler equations is known to be extremely challenging [A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow. Cambridge: Cambridge University Press (2002; Zbl 0983.76001); J. D. Gibbon, Physica D 237, No. 14–17, 1894–1904 (2008; Zbl 1143.76389); A. Kiselev, in: Proceedings of the international congress of mathematicians 2018, ICM 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 2363–2390 (2018; Zbl 1448.35398); T. D. Drivas and T. M. Elgindi, EMS Surv. Math. Sci. 10, No. 1, 1–100 (2023; Zbl 1532.35359); P. Constantin, Bull. Am. Math. Soc., New Ser. 44, No. 4, 603–621 (2007; Zbl 1132.76009)]. In [Ann. Math. (2) 194, No. 3, 647–727 (2021; Zbl 1492.35199)] (see also [T. M. Elgindi et al., “On the stability of self-similar blow-up for \(C^{1,\alpha}\) solutions to the incompressible Euler equations on \(\mathbb{R}^3\)”, Preprint, arXiv:1910.14071]), T. Elgindi proved that the 3D axisymmetric Euler equations with no swirl and \(C^{1, \alpha}\) initial velocity develops a finite time singularity. Inspired by Elgindi’s work, we proved that the 3D axisymmetric Euler and 2D Boussinesq equations with \(C^{1, \alpha}\) initial velocity and boundary develop a stable asymptotically self-similar (or approximately self-similar) finite time singularity [J. Chen and T. Y. Hou, Commun. Math. Phys. 383, No. 3, 1559–1667 (2021; Zbl 1485.35071)] in the same setting as the Hou-Luo blowup scenario [G. Luo and T. Y. Hou, Proc. Natl. Acad. Sci. USA 111, No. 36, 12968–12973 (2014; Zbl 1431.35115); Multiscale Model. Simul. 12, No. 4, 1722–1776 (2014; Zbl 1316.35235)]. On the other hand, the authors of [A. F. Vasseur and M. Vishik, Commun. Math. Phys. 378, No. 1, 557–568 (2020; Zbl 1446.35114)] and [L. Lafleche et al., J. Math. Pures Appl. (9) 155, 140–154 (2021; Zbl 1484.76016)] recently showed that blowup solutions to the 3D Euler equations are hydrodynamically unstable. The instability results obtained in [Vasseur and Vishik, loc. cit.] and [Lafleche et al., loc. cit.] require some strong regularity assumption on the initial data, which is not satisfied by the \(C^{1, \alpha}\) velocity field. In this paper, we generalize the analysis of Elgindi [loc. cit.], Chen and Hou [loc. cit.], Vasseur and Vishik [loc. cit.] and Lafleche et al. [loc. cit.] to show that the blowup solutions of the 3D Euler and 2D Boussinesq equations with \(C^{1, \alpha}\) velocity are unstable under the notion of stability introduced in Vasseur and Vishik [loc. cit.] and Lafleche et al. [loc. cit.]. These two seemingly contradictory results reflect the difference of the two approaches in studying the stability of 3D Euler blowup solutions.

MSC:

35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
35B35 Stability in context of PDEs
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76E30 Nonlinear effects in hydrodynamic stability
35A21 Singularity in context of PDEs
35B44 Blow-up in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Beale, JT; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94, 1, 61-66, 1984 · Zbl 0573.76029 · doi:10.1007/BF01212349
[2] Biasi, A., Self-similar solutions to the compressible Euler equations and their instabilities, Commun. Nonlinear Sci. Numer. Simul., 103, 106014, 2021 · Zbl 1477.35142 · doi:10.1016/j.cnsns.2021.106014
[3] Buckmaster, T., Shkoller, S., Vicol, V.: Formation of shocks for 2D isentropic compressible Euler. Commun. Pure Appl. Math. 75(9), 2069-2120 (2022) · Zbl 1498.35405
[4] Buckmaster, T.; Shkoller, S.; Vicol, V., Formation of point shocks for 3d compressible Euler, Commun. Pure Appl. Math., 76, 9, 2073-2191, 2023 · Zbl 1527.35230 · doi:10.1002/cpa.22068
[5] Chen, J., Singularity formation and global well-posedness for the generalized Constantin-Lax-Majda equation with dissipation, Nonlinearity, 33, 5, 2502, 2020 · Zbl 1481.35320 · doi:10.1088/1361-6544/ab74b0
[6] Chen, J.: On the regularity of the De gregorio model for the 3D Euler equations. To appear in J. Eur. Math. Soc., arXiv preprint arXiv:2107.04777, (2021)
[7] Chen, J., On the slightly perturbed De Gregorio model on \(S^1\), Arch. Ration. Mech. Anal., 241, 3, 1843-1869, 2021 · Zbl 1475.35265 · doi:10.1007/s00205-021-01685-w
[8] Chen, J.: Remarks on the smoothness of the \({C}^{1,\alpha }\) asymptotically self-similar singularity in the 3D Euler and 2D Boussinesq equations. arXiv preprint arXiv:2309.00150, (2023)
[9] Chen, J., Hou, T.Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous numerics. arXiv preprint: arXiv:2305.05660 [math.AP]
[10] Chen, J., Hou, T.Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. arXiv:1910.00173, (2019)
[11] Chen, J.; Hou, TY, Finite time blowup of 2D Boussinesq and 3D Euler equations with \({C}^{1,\alpha }\) velocity and boundary, Commun. Math. Phys., 383, 3, 1559-1667, 2021 · Zbl 1485.35071 · doi:10.1007/s00220-021-04067-1
[12] Chen, J., Hou, T.Y.: On stability and instability of \({C}^{1,\alpha }\) singular solutions to the 3D Euler and 2D Boussinesq equations. arXiv preprint arXiv:2206.01296, (2022)
[13] Chen, J., Hou, T.Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: analysis. arXiv preprint: arXiv:2210.07191v3 [math.AP], (2022)
[14] Chen, J.; Hou, TY, Correction to: Finite time blowup of 2D Boussinesq and 3D Euler equations with \(c^{1,\alpha }\) velocity and boundary, Commun. Math. Phys., 399, 1, 573-575, 2023 · Zbl 1511.35046 · doi:10.1007/s00220-022-04548-x
[15] Chen, J.; Hou, TY; Huang, D., On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations, Commun. Pure Appl. Math., 74, 6, 1282-1350, 2021 · Zbl 1469.35053 · doi:10.1002/cpa.21991
[16] Chen, J.; Hou, TY; Huang, D., Asymptotically self-similar blowup of the Hou-Luo model for the 3D Euler equations, Ann. PDE, 8, 2, 24, 2022 · Zbl 1504.35247 · doi:10.1007/s40818-022-00140-7
[17] Choi, K.; Hou, TY; Kiselev, A.; Luo, G.; Sverak, V.; Yao, Y., On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations, CPAM, 70, 11, 2218-2243, 2017 · Zbl 1377.35218
[18] Choi, K.; Kiselev, A.; Yao, Y., Finite time blow up for a 1D model of 2D Boussinesq system, Commun. Math. Phys., 334, 3, 1667-1679, 2015 · Zbl 1309.35072 · doi:10.1007/s00220-014-2146-2
[19] Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularity formation for Burgers’ equation with transverse viscosity. In: Annales scientifiques de l’École Normale Supérieure, volume 55, (2022) · Zbl 1501.35089
[20] Constantin, P., On the Euler equations of incompressible fluids, Bull. Am. Math. Soc., 44, 4, 603-621, 2007 · Zbl 1132.76009 · doi:10.1090/S0273-0979-07-01184-6
[21] Córdoba, D., Martínez-Zoroa, L.: Blow-up for the incompressible 3D-Euler equations with uniform \(c^{1,1/2-\epsilon } \cap l^2\) force. arXiv preprint arXiv:2309.08495, (2023)
[22] Cordoba, D., Martinez-Zoroa, L., Zheng, F.: Finite time singularities to the 3D incompressible Euler equations for solutions in \({C}^{1,\alpha } \cap{C}^{\infty }({R}^3 \backslash \{ 0 \} ) \cap{L}^2\). arXiv preprint arXiv:2308.12197, (2023)
[23] De Gregorio, S., On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys., 59, 5-6, 1251-1263, 1990 · Zbl 0712.76027 · doi:10.1007/BF01334750
[24] De Gregorio, S., A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Methods Appl. Sci., 19, 15, 1233-1255, 1996 · Zbl 0860.35101 · doi:10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W
[25] Drivas, TD; Elgindi, TM, Singularity formation in the incompressible Euler equation in finite and infinite time, EMS Surv. Math. Sci., 10, 1, 1-100, 2023 · Zbl 1532.35359 · doi:10.4171/emss/66
[26] Elgindi, TM, Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R} }^3\), Ann. Math., 194, 3, 647-727, 2021 · Zbl 1492.35199 · doi:10.4007/annals.2021.194.3.2
[27] Elgindi, T.M, Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R}}^3\). Camb. J. Math. 9(4), 1035-1075 (2021)
[28] Elgindi, TM; Ghoul, T.; Masmoudi, N., Stable self-similar blow-up for a family of nonlocal transport equations, Anal. PDE, 14, 3, 891-908, 2021 · Zbl 1472.35277 · doi:10.2140/apde.2021.14.891
[29] Elgindi, TM; Jeong, I-J, Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations, Ann. PDE, 5, 2, 1-51, 2019 · Zbl 1436.35055 · doi:10.1007/s40818-019-0071-6
[30] Elgindi, T.M., Jeong, I.-J.: On the effects of advection and vortex stretching. Arch. Ration. Mech. Anal. 235(3), 1763-1817 (2019) · Zbl 1434.35091
[31] Elgindi, TM; Jeong, I-J, Finite-time singularity formation for strong solutions to the Boussinesq system, Ann. PDE, 6, 1-50, 2020 · Zbl 1462.35287 · doi:10.1007/s40818-020-00080-0
[32] Elgindi, T.M, Pasqualotto, F.: From instability to singularity formation in incompressible fluids. arXiv preprint arXiv:2310.19780, (2023)
[33] Elgindi, T.M, Pasqualotto, F.: Invertibility of a linearized boussinesq flow: a symbolic approach. arXiv preprint arXiv:2310.19781, (2023)
[34] Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. In: Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 14, pp. 187-209. Elsevier (1997) · Zbl 0874.76026
[35] Friedlander, S.; Vishik, MM, Dynamo theory, vorticity generation, and exponential stretching, Chaos Interdiscip. J. Nonlinear Sci., 1, 2, 198-205, 1991 · Zbl 0899.76371 · doi:10.1063/1.165829
[36] Friedlander, S.; Vishik, MM, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66, 17, 2204, 1991 · Zbl 0968.76543 · doi:10.1103/PhysRevLett.66.2204
[37] Gibbon, JD, The three-dimensional Euler equations: Where do we stand?, Physica D, 237, 14, 1894-1904, 2008 · Zbl 1143.76389 · doi:10.1016/j.physd.2007.10.014
[38] Hou, TY, Potential singularity of the \(3\) D Euler equations in the interior domain, Found. Comput. Math., 23, 2203-2249, 2023 · Zbl 1529.35354 · doi:10.1007/s10208-022-09585-5
[39] Hou, TY, The potentially singular behavior of the \(3\) D Navier-Stokes equations, Found. Comput. Math., 23, 2251-2299, 2023 · Zbl 1529.35334 · doi:10.1007/s10208-022-09578-4
[40] Hou, TY; Huang, D., A potential two-scale traveling wave singularity for 3D incompressible Euler equations, Phys. D Nonlinear Phenomena., 435, 2022 · Zbl 1495.76017 · doi:10.1016/j.physd.2022.133257
[41] Inoue, A., Miyakawa, T.: On the existence of solutions for linearized Euler’s equation. 282-285 (1979) · Zbl 0471.34002
[42] Kenig, CE; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 3, 645-675, 2006 · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[43] Kiselev, A., Ryzhik, L., Yao, Y., Zlatoš, A.: Finite time singularity for the modified SQG patch equation. Ann. Math. 909-948 (2016) · Zbl 1360.35159
[44] Kiselev, A.; Sverak, V., Small scale creation for solutions of the incompressible two dimensional Euler equation, Ann. Math., 180, 1205-1220, 2014 · Zbl 1304.35521 · doi:10.4007/annals.2014.180.3.9
[45] Kiselev, A.: Small scales and singularity formation in fluid dynamics. In: Proceedings of the International Congress of Mathematicians, vol. 3 (2018) · Zbl 1448.35398
[46] Lafleche, L.; Vasseur, AF; Vishik, M., Instability for axisymmetric blow-up solutions to incompressible Euler equations, Journal de Mathématiques Pures et Appliquées, 155, 140-154, 2021 · Zbl 1484.76016 · doi:10.1016/j.matpur.2021.02.006
[47] Landman, MJ; Papanicolaou, GC; Sulem, C.; Sulem, P-L, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A (3), 38, 8, 3837-3843, 1988 · doi:10.1103/PhysRevA.38.3837
[48] Lifschitz, A.; Hameiri, E., Local stability conditions in fluid dynamics, Phys. Fluids A, 3, 11, 2644-2651, 1991 · Zbl 0746.76050 · doi:10.1063/1.858153
[49] Luo, G.; Hou, TY, Toward the finite-time blowup of the 3D incompressible Euler equations: a numerical investigation, SIAM Multiscale Model. Simul., 12, 4, 1722-1776, 2014 · Zbl 1316.35235 · doi:10.1137/140966411
[50] Luo, G.; Hou, TY, Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Natl. Acad. Sci., 111, 36, 12968-12973, 2014 · Zbl 1431.35115 · doi:10.1073/pnas.1405238111
[51] Majda, AJ; Bertozzi, AL, Vorticity and Incompressible Flow, 2002, Cambridge: Cambridge University Press, Cambridge · Zbl 0983.76001
[52] Martel, Y.; Merle, F.; Raphaël, P., Blow up for the critical generalized Korteweg-de Vries equation. I. Dynamics near the soliton, Acta Math., 212, 1, 59-140, 2014 · Zbl 1301.35137 · doi:10.1007/s11511-014-0109-2
[53] Masmoudi, N.; Zaag, H., Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal., 255, 7, 1613-1666, 2008 · Zbl 1158.35016 · doi:10.1016/j.jfa.2008.03.008
[54] McLaughlin, DW; Papanicolaou, GC; Sulem, C.; Sulem, P-L, Focusing singularity of the cubic Schrödinger equation, Phys. Rev. A, 34, 2, 1200, 1986 · doi:10.1103/PhysRevA.34.1200
[55] Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 157-222 (2005) · Zbl 1185.35263
[56] Merle, F.; Raphaël, P.; Rodnianski, I.; Szeftel, J., On blow up for the energy super critical defocusing nonlinear Schrödinger equations, Invent. Math., 227, 1, 247-413, 2022 · Zbl 1487.35353 · doi:10.1007/s00222-021-01067-9
[57] Merle, F.; Raphaël, P.; Rodnianski, I.; Szeftel, J., On the implosion of a compressible fluid II: singularity formation, Ann. Math., 196, 2, 779-889, 2022 · Zbl 1497.35385 · doi:10.4007/annals.2022.196.2.4
[58] Merle, F.; Zaag, H., Stability of the blow-up profile for equations of the type \(u_t= { \Delta u } + | u|^{ p- 1} u \), Duke Math. J., 86, 1, 143-195, 1997 · Zbl 0872.35049 · doi:10.1215/S0012-7094-97-08605-1
[59] Merle, F.; Zaag, H., On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Commun. Math. Phys., 333, 3, 1529-1562, 2015 · Zbl 1315.35134 · doi:10.1007/s00220-014-2132-8
[60] Oh, S.-J., Pasqualotto, F.: Gradient blow-up for dispersive and dissipative perturbations of the burgers equation. arXiv preprint arXiv:2107.07172, (2021)
[61] Okamoto, H.; Sakajo, T.; Wunsch, M., On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21, 10, 2447-2461, 2008 · Zbl 1221.35300 · doi:10.1088/0951-7715/21/10/013
[62] Plecháč, P.; Šverák, V., On self-similar singular solutions of the complex Ginzburg-Landau equation, Commun. Pure Appl. Math., 54, 10, 1215-1242, 2001 · Zbl 1032.35162 · doi:10.1002/cpa.3006
[63] Shao, R.; Zhang, P., On the instability of the possible blow-up solutions to 2D Boussinesq system, J. Differ. Equ., 306, 547-568, 2022 · Zbl 1477.35136 · doi:10.1016/j.jde.2021.10.051
[64] Vasseur, AF; Vishik, M., Blow-up solutions to 3D Euler are hydrodynamically unstable, Commun. Math. Phys., 378, 1, 557-568, 2020 · Zbl 1446.35114 · doi:10.1007/s00220-020-03790-5
[65] Vishik, M., Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. (9), 75, 6, 531-557, 1996 · Zbl 0870.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.