×

Singularity formation and global well-posedness for the generalized Constantin-Lax-Majda equation with dissipation. (English) Zbl 1481.35320

Summary: We study a generalization due to S. De Gregorio [Math. Methods Appl. Sci. 19, No. 15, 1233–1255 (1996; Zbl 0860.35101)] and M. Wunsch [Commun. Math. Sci. 9, No. 3, 929–936 (2011; Zbl 1272.35049)] of the Constantin-Lax-Majda equation (gCLM) on the real line \(\omega_t+au\omega_x=u_x\omega-\nu\Lambda^\gamma\omega\), \(u_x=H\omega\) where \(H\) is the Hilbert transform and \(\Lambda=(-\partial_{xx})^{1/2}\). We use the method in [the author et al., Commun. Pure Appl. Math. 74, No. 6, 1282–1350 (2021; Zbl 1469.35053)] to prove finite time self-similar blowup for \(a\) close to \(\frac{1}{2}\) and \(\gamma=2\) by establishing nonlinear stability of an approximate self-similar profile. For \(a>-1\), we discuss several classes of initial data and establish global well-posedness and an one-point blowup criterion for different initial data. For \(a\leq-1\), we prove global well-posedness for gCLM with critical and supercritical dissipation.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35C06 Self-similar solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B44 Blow-up in context of PDEs
35B35 Stability in context of PDEs

References:

[1] Bahouri H, Chemin J Y and Danchin R 2011 Fourier Analysis and Nonlinear Partial Differential Equations vol 343 (Berlin: Springer) · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[2] Beale J, Kato T and Majda A 1984 Remarks on the breakdown of smooth solutions for the 3D Euler equations Commun. Math. Phys.94 61-6 · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] Caffarelli L, Kohn R and Nirenberg L 1982 Partial regularity of suitable weak solutions of the Navier-Stokes equations Commun. Pure Appl. Math.35 771-831 · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[4] Castro A and Córdoba D 2010 Infinite energy solutions of the surface quasi-geostrophic equation Adv. Math.225 1820-9 · Zbl 1205.35219 · doi:10.1016/j.aim.2010.04.018
[5] Chen J, Hou T Y and Huang D 2019 On the finite time blowup of the de gregorio model for the 3D Euler equation (arXiv:1905.06387)
[6] Constantin P, Lax P D and Majda A 1985 A simple one-dimensional model for the three-dimensional vorticity equation CPAM38 715-24 · Zbl 0615.76029
[7] Constantin P, Tarfulea A and Vicol V 2015 Long time dynamics of forced critical sqg Commun. Math. Phys.335 93-141 · Zbl 1316.35238 · doi:10.1007/s00220-014-2129-3
[8] Constantin P and Vicol V 2012 Nonlinear maximum principles for dissipative linear nonlocal operators and applications Geom. Funct. Anal.22 1289-321 · Zbl 1256.35078 · doi:10.1007/s00039-012-0172-9
[9] Córdoba A, Córdoba D and Fontelos M 2005 Formation of singularities for a transport equation with nonlocal velocity Ann. Math.162 1377-89 · Zbl 1101.35052 · doi:10.4007/annals.2005.162.1377
[10] Córdoba A and Córdoba D 2004 A maximum principle applied to quasi-geostrophic equations Commun. Math. Phys.249 511-28 · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[11] De Gregorio S 1990 On a one-dimensional model for the three-dimensional vorticity equation J. Stat. Phys.59 1251-63 · Zbl 0712.76027 · doi:10.1007/BF01334750
[12] De Gregorio S 1996 A partial differential equation arising in a 1D model for the 3D vorticity equation Math. Methods. Appl. Sci.19 1233-55 · Zbl 0860.35101 · doi:10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W
[13] Do T 2014 On a 1D transport equation with nonlocal velocity and supercritical dissipation J. Differ. Equ.256 3166-78 · Zbl 1286.35058 · doi:10.1016/j.jde.2014.01.037
[14] Dong H 2008 Well-posedness for a transport equation with nonlocal velocity J. Funct. Anal.255 3070-97 · Zbl 1170.35004 · doi:10.1016/j.jfa.2008.08.005
[15] Elgindi T M and Jeong I J 2019 On the effects of advection and vortex stretching Arch. Rational Mech. Anal. 1-55
[16] Elgindi T M 2019 Finite-time singularity formation for c1,α solutions to the incompressible euler equations on R3 (arXiv:1904.04795)
[17] Elgindi T M, Ghoul T E and Masmoudi N 2019 Stable self-similar blowup for a family of nonlocal transport equations (arXiv:1906.05811)
[18] Ferreira L C and Moitinho V V 2018 Global smoothness for a 1D supercritical transport model with nonlocal velocity (arXiv:1809.04373)
[19] Hardy G, Littlewood J and Pólya G 1952 Inequalities (Cambridge: Cambridge university press) · Zbl 0047.05302
[20] Hou T Y, Liu P and Wang F 2018 Global regularity for a family of 3D models of the axi-symmetric Navier-Stokes equations Nonlinearity31 1940 · Zbl 1393.35170 · doi:10.1088/1361-6544/aaaa0b
[21] Hou T and Lei Z 2009 On the stabilizing effect of convection in three-dimensional incompressible flows Commun. Pure Appl. Math.62 501-64 · Zbl 1171.35095 · doi:10.1002/cpa.20254
[22] Hou T and Li C 2008 Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl Commun. Pure Appl. Math.61 661-97 · Zbl 1138.35077 · doi:10.1002/cpa.20212
[23] Kiselev A 2010 Regularity and blow up for active scalars Math. Model. Nat. Phenom.5 225-55 · Zbl 1194.35490 · doi:10.1051/mmnp/20105410
[24] Kiselev A 2018 Small scales and singularity formation in fluid dynamics (arXiv:1807.00184 [math.AP]) · Zbl 1448.35398
[25] Kiselev A, Nazarov F and Volberg A 2007 Global well-posedness for the critical 2D dissipative quasi-geostrophic equation Inventiones Math.167 445-53 · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[26] Landman M, Papanicolaou G, Sulem C and Sulem P 1988 Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension Phys. Rev. A 38 3837 · doi:10.1103/PhysRevA.38.3837
[27] Lei Z, Liu J and Ren X 2019 On the Constantin-Lax-Majda Model with Convection Commun. Math. Phys. 1-19
[28] Li D and Rodrigo J 2008 Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Adv. Math.217 2563-8 · Zbl 1138.35381 · doi:10.1016/j.aim.2007.11.002
[29] Martel Y et al 2014 Blow up for the critical generalized korteweg-de vries equation. i: Dynamics near the soliton Acta Math.212 59-140 · Zbl 1301.35137 · doi:10.1007/s11511-014-0109-2
[30] McLaughlin D, Papanicolaou G, Sulem C and Sulem P 1986 Focusing singularity of the cubic Schrödinger equation Phys. Rev. A 34 1200 · doi:10.1103/PhysRevA.34.1200
[31] Merle F and Zaag H 1997 Stability of the blow-up profile for equations of the type ut = u + —u—p-1u Duke Math. J.86 143-95 · Zbl 0872.35049 · doi:10.1215/S0012-7094-97-08605-1
[32] Merle F and Zaag H 2015 On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations Commun. Math. Phys.333 1529-62 · Zbl 1315.35134 · doi:10.1007/s00220-014-2132-8
[33] Okamoto H, Sakajo T and Wunsch M 2008 On a generalization of the Constantin-Lax-Majda equation Nonlinearity21 2447 · Zbl 1221.35300 · doi:10.1088/0951-7715/21/10/013
[34] Schochet S 1986 Explicit solutions of the viscous model vorticity equation Commun. Pure Appl. Math.39 531-7 · Zbl 0623.76012 · doi:10.1002/cpa.3160390404
[35] Silvestre L and Vicol V 2016 On a transport equation with nonlocal drift Trans. Am. Math. Soc.368 6159-88 · Zbl 1334.35254 · doi:10.1090/tran6651
[36] Sverak V 2017 On certain models in the pde theory of fluid flows Journées Équations aux dérivées partielles 1-26
[37] Wunsch M 2011 The generalized Constantin-Lax-Majda equation revisited Commun. Math. Sci.9 929-36 · Zbl 1272.35049 · doi:10.4310/CMS.2011.v9.n3.a12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.