×

Study of the spherical Couette flow with electromagnetic stirring. (English) Zbl 07463924

Summary: The flow driven by electromagnetic forcing of an electrolytic fluid in a concentric sphere system with differential rotation is studied experimentally and theoretically in the laminar regime. The electromagnetic force is generated by the interaction of a direct current injected radially through electrodes located at the equatorial zone of the spheres and a dipolar magnetic field produced by a permanent magnet inside the inner sphere. Even though the flows are fully three-dimensional, under some assumptions, they can be mathematically modeled with a general one-dimensional solution from the incompressible Navier-Stokes equations. Additionally, in order to deepen the flow dynamics, a full three-dimensional numerical simulation is also obtained. Experimentally, velocity profiles in the equatorial plane between spheres were obtained with particle image velocimetry. The analytical solution reproduces qualitatively the experimental profiles, whereas the numerical solution reproduces quantitatively the experimental measurements.

MSC:

76-XX Fluid mechanics
78-XX Optics, electromagnetic theory
Full Text: DOI

References:

[1] Donnelly, R., Taylor-Couette flow: The early days, Phys. Today, 44, 11, 32-39 (1991)
[2] Drazin, P. G.; Reid, W. H., (Hydrodynamic Stability. Hydrodynamic Stability, Cambridge Mathematical Library (2004), Cambridge University Press) · Zbl 1055.76001
[3] Couette, M. F.A., Études sur le frottement des liquides, 119 (1890), Faculté des sciences de Paris · JFM 22.0964.01
[4] Taylor, G. I., VIII. STability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. A, 223, 605-615, 289-343 (1923) · JFM 49.0607.01
[5] Andereck, C. D.; Liu, S. S.; Swinney, H. L., Flow regimes in a circular couette system with independently rotating cylinders, J. Fluid Mech., 164, 155-183 (1986)
[6] Pirrò, D.; Quadrio, M., Direct numerical simulation of turbulent Taylor-Couette flow, Eur. J. Mech. B/Fluids, 27, 5, 552-566 (2008) · Zbl 1147.76035
[7] Collins, C.; Clark, M.; Cooper, C. M.; Flanagan, K.; Khalzov, I. V.; Nornberg, M. D.; Seidlitz, B.; Wallace, J.; Forest, C. B., Taylor-couette flow of unmagnetized plasma, Phys. Plasmas, 21, 4, Article 042117 pp. (2014)
[8] Adebayo, D.; Al-Ameri, J.; Tyukin, I.; Rona, A., Linear stability analysis of the flow between rotating cylinders of wide gap, Eur. J. Mech. B/Fluids, 72, 567-575 (2018) · Zbl 1408.76246
[9] Ilin, K.; Morgulis, A., On the stability of the Couette-Taylor flow between rotating porous cylinders with radial flow, Eur. J. Mech. B/Fluids, 80, 174-186 (2020) · Zbl 1469.76049
[10] Hart, J. E., Ferromagnetic rotating Couette flow: the role of magnetic viscosity, J. Fluid Mech., 453, 21-38 (2002) · Zbl 1007.76096
[11] Teja, K. M.; Narasimhamurthy, V. D.; Andersson, H. I.; Pettersen, B., Onset of shear-layer instability at the interface of parallel Couette flows, Int. J. Heat Fluid Flow, 89, Article 108786 pp. (2021)
[12] Rüdiger, G.; Gellert, M.; Hollerbach, R.; Schultz, M.; Stefani, F., Stability and instability of hydromagnetic Taylor-Couette flows, Phys. Rep., 741, 1-89 (2018) · Zbl 1392.76015
[13] Stelzer, Z.; Cébron, D.; Miralles, S.; Vantieghem, S.; Noir, J.; Scarfe, P.; Jackson, A., Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow, Phys. Fluids, 27, 7 (2015)
[14] Stelzer, Z.; Miralles, S.; Cébron, D.; Noir, J.; Vantieghem, S.; Jackson, A., Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. II. instabilities, Phys. Fluids, 27, 8 (2015)
[15] Mahloul, M.; Mahamdia, A.; Kristiawan, M., The spherical Taylor-Couette flow, Eur. J. Mech. B/Fluids, 59, 1-6 (2016) · Zbl 1408.76558
[16] Proudman, I., The almost-rigid rotation of viscous fluid between concentric spheres, J. Fluid Mech., 1, 5, 505-516 (1956) · Zbl 0072.20104
[17] Stewartson, K., On almost rigid rotations. Part 2, J. Fluid Mech., 26, 1, 131-144 (1966) · Zbl 0139.44102
[18] Wicht, J., Flow instabilities in the wide-gap spherical Couette system, J. Fluid Mech., 738, 184-221 (2014)
[19] Hollerbach, R.; Wiener, R. J.; Sullivan, I. S.; Donnelly, R. J.; Barenghi, C. F., The flow around a torsionally oscillating sphere, Phys. Fluids, 14, 12, 4192-4205 (2002) · Zbl 1185.76171
[20] Box, F.; Thompson, A. B.; Mullin, T., Torsional oscillations of a sphere in a Stokes flow, Exp. Fluids, 56, 12, 209 (2015)
[21] Gissinger, C.; Ji, H.; Goodman, J., Instabilities in magnetized spherical Couette flow, Phys. Rev. E, 84, Article 026308 pp. (2011)
[22] Schmitt, D.; Cardin, P.; La Rizza, P.; Nataf, H.-C., Magneto-Coriolis waves in a spherical Couette flow experiment, Eur. J. Mech. B/Fluids, 37, 10-22 (2013) · Zbl 1347.76061
[23] Figueroa, A.; Schaeffer, N.; Nataf, H.-C.; Schmitt, D., Modes and instabilities in magnetized spherical Couette flow, J. Fluid Mech., 716, 445-469 (2013) · Zbl 1284.76165
[24] Kasprzyk, C.; Kaplan, E.; Seilmayer, M.; Stefani, F., Transitions in a magnetized quasi-laminar spherical Couette flow, Magnetohydrodynamics, 53, 2, 393-401 (2017)
[25] Kaplan, E.; Nataf, H.-C.; Schaeffer, N., Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow, Phys. Rev. Fluids, 3, 3, 34608 (2018)
[26] Garcia, F.; Stefani, F., Continuation and stability of rotating waves in the magnetized spherical Couette system: Secondary transitions and multistability, Proc. R. Soc. A, 474, 2220 (2018) · Zbl 1425.86015
[27] Ogbonna, J.; Garcia, F.; Gundrum, T.; Seilmayer, M.; Stefani, F., Experimental investigation of the return flow instability in magnetized spherical Couette flows, Phys. Fluids, 32, 12, Article 124119 pp. (2020)
[28] Schrauf, G., The first instability in spherical Taylor-Couette flow, J. Fluid Mech., 166, 287-303 (1986) · Zbl 0601.76064
[29] Travnikov, V.; Eckert, K.; Odenbach, S., Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths, Acta Mech., 219, 3-4, 255-268 (2011) · Zbl 1333.76040
[30] Garcia, F.; Seilmayer, M.; Giesecke, A.; Stefani, F., Chaotic wave dynamics in weakly magnetized spherical Couette flows, Chaos, 30, 4, Article 043116 pp. (2020)
[31] Hollerbach, R., Non-axisymmetric instabilities in magnetic spherical Couette flow, Proc. R. Soc. A, 465, 2107, 2003-2013 (2009) · Zbl 1186.76651
[32] Soward, A. M.; Dormy, E., Shear-layers in magnetohydrodynamic spherical Couette flow with conducting walls, J. Fluid Mech., 645, 145-185 (2010) · Zbl 1189.76791
[33] Sisan, D. R.; Mujica, N.; Tillotson, W. A.; Huang, Y. M.; Dorland, W.; Hassam, A. B.; Antonsen, T. M.; Lathrop, D. P., Experimental observation and characterization of the magnetorotational instability, Phys. Rev. Lett., 93, 11, 8-11 (2004)
[34] Brito, D.; Alboussière, T.; Cardin, P.; Gagnière, N.; Jault, D.; La Rizza, P.; Masson, J.-P.; Nataf, H.-C.; Schmitt, D., Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment, Phys. Rev. E, 83, Article 066310 pp. (2011)
[35] Rüdiger, G.; Kitchatinov, L. L.; Hollerbach, R., Magnetic spherical Couette flow, (Magnetic Processes in Astrophysics (2013), Wiley-VCH: Wiley-VCH Weinheim), 287-326
[36] Hollerbach, R.; Wei, X.; Noir, J.a.; Jackson, A., Electromagnetically driven zonal flows in a rapidly rotating spherical shell, J. Fluid Mech., 725, 428-445 (2013) · Zbl 1287.76238
[37] Figueroa, A.; Rojas, J. A.; Rosales, J.; Vázquez, F., Electromagnetically driven flow between concentric spheres: Experiments and simulations, (Klapp, J.; Sigalotti, L. D.G.; Medina, A.; López, A.; Ruiz-Chavarría, G., Recent Advances in Fluid Dynamics with Environmental Applications (2016), Springer International Publishing: Springer International Publishing Cham), 253-264
[38] Piedra, S.; Rojas, J. A.; Rivera, I.; Figueroa, A., Hydrodynamic instability and vortex breakdown in electromagnetically driven flow between concentric spheres: experiments and theory, Phys. Rev. Fluids (2020), submitted for publication
[39] Figueroa, A.; Rivero, M.; Núñez, J.; Rojas, J. A.; Rivera, I., Oscillatory flow between concentric spheres driven by an electromagnetic force, J. Fluid Mech., 920, A5 (2021) · Zbl 1490.76233
[40] Figueroa, A.; Demiaux, F.; Cuevas, S.; Ramos, E., Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer, J. Fluid Mech., 641, 245-261 (2009) · Zbl 1183.76928
[41] Thielicke, W.; Stamhuis, E. J., Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB, J. Open. Res. Softw., 2, pe30 (2014)
[42] Figueroa, A.; Meunier, P.; Cuevas, S.; Villermaux, E.; Ramos, E., Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions, Phys. Fluids, 26, 1, Article 013601 pp. (2014)
[43] Figueroa, A.; Cuevas, S.; Ramos, E., Electromagnetically driven oscillatory shallow layer flow, Phys. Fluids, 23, 1, Article 013601 pp. (2011)
[44] Griebel, M.; Dornseifer, T.; Neunhoeffer, T., Numerical Simulation in Fluid Dynamics (1998), SIAM: SIAM New York
[45] Cuevas, S.; Smolentsev, S.; Abdou, M. A., On the flow past a magnetic obstacle, J. Fluid Mech., 553, 227-252 (2006) · Zbl 1134.76737
[46] Wimmer, M., Experiments on a viscous fluid flow between concentric rotating spheres, J. Fluid Mech., 78, 2, 317-335 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.