×

Balancing act: multivariate rational reconstruction for IBP. (English) Zbl 1529.81068

Summary: We address the problem of unambiguous reconstruction of rational functions of many variables. This is particularly relevant for recovery of exact expansion coefficients in integration-by-parts identites (IBPs) based on modular arithmetic. These IBPs are indispensable in modern approaches to evaluation of multiloop Feynman integrals by means of differential equations. Modular arithmetic is far more superior to algebraic implementations when one deals with high-multiplicity situations involving a large number of Lorentz invariants. We introduce a new method based on balanced relations which allows one to achieve the goal of a robust functional restoration with minimal data input. The technique is implemented as a Mathematica package Reconstruction.m in the FIRE6 environment and thus successfully demonstrates a proof of concept.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
32C30 Integration on analytic sets and spaces, currents
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
22E70 Applications of Lie groups to the sciences; explicit representations
65Y15 Packaged methods for numerical algorithms

References:

[1] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops, Nucl. Phys. B, 192, 159-204 (1981)
[2] Smirnov, V. A., Analytic tools for Feynman integrals, Springer Tracts Mod. Phys., 250, 1-296 (2012) · Zbl 1268.81004
[3] Smirnov, A. V.; Petukhov, A. V., The number of master integrals is finite, Lett. Math. Phys., 97, 37-44 (2011) · Zbl 1216.81076
[4] Anastasiou, C.; Lazopoulos, A., Automatic integral reduction for higher order perturbative calculations, J. High Energy Phys., 07, Article 046 pp. (2004)
[5] Smirnov, A. V.; Chuharev, F. S., FIRE6: Feynman integral REduction with modular arithmetic, Comput. Phys. Commun., 247, Article 106877 pp. (2020) · Zbl 1510.81007
[6] Studerus, C., Reduze-Feynman integral reduction in C++, Comput. Phys. Commun., 181, 1293-1300 (2010); von Manteuffel, A.; Studerus, C., Reduze 2 - distributed Feynman integral reduction · Zbl 1219.81133
[7] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira—a Feynman integral reduction program, Comput. Phys. Commun., 230, 99-112 (2018) · Zbl 1498.81004
[8] Klappert, J.; Lange, F.; Maierhöfer, P.; Usovitsch, J., Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun., 266, Article 108024 pp. (2021) · Zbl 1523.81078
[9] Lee, R. N., Presenting LiteRed: a tool for the loop InTEgrals REDuction; Lee, R. N., LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser., 523, Article 012059 pp. (2014)
[10] Laporta, S., High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A, 15, 5087-5159 (2000) · Zbl 0973.81082
[11] von Manteuffel, A.; Schabinger, R. M., A novel approach to integration by parts reduction, Phys. Lett. B, 744, 101-104 (2015) · Zbl 1330.81151
[12] Wang, P. S., A p-adic algorithm for univariate partial fractions, (Proc. ACM Symp. Symbolic Algebraic Comp. 1981 (1981)), 212-217; Wang, P. S.; Guy, M. J.T.; Davenport, J. H., P-adic reconstruction of rational numbers, ACM SIGSAM Bull., 16, 2-3 (1982) · Zbl 0486.68026
[13] Monagan, M., Maximal quotient rational reconstruction: an almost optimal algorithm for rational reconstruction, (Proc. Int. Symp. Symbolic Algebraic Comp. ISSAC’04 (2004)), 243-249 · Zbl 1134.68602
[14] von zur Gathen, J.; Gerhard, J., Modern Computer Algebra, Modern Computer Algebra (2013), Cambridge University Press · Zbl 1277.68002
[15] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), Dover Publications) · Zbl 0171.38503
[16] Ben-Or, M.; Tiwari, P., A deterministic algorithm for sparse multivariate polynomial interpolation, (Proc. 20 Ann. ACM Symp. Theory of Computing 20th ACM STOC (1988)), 301-309
[17] Zippel, R., Interpolating polynomials from their values, J. Symb. Comput., 9, 375-403 (1990) · Zbl 0702.65011
[18] Grigoriev, D.; Karpinski, M.; Singer, M. F., Computational complexity of sparse rational interpolation, SIAM J. Comput., 23, 1-11 (1994) · Zbl 0802.68060
[19] Kaltofen, E., Greatest common divisors of polynomials given by straight-line programs, J. ACM, 35, 231-264 (1988); Kaltofen, E.; Trager, B., Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators, J. Symb. Comput., 9, 301-320 (1990); Kaltofen, E.; Yang, Z., On exact and approximate interpolation of sparse rational functions, (Proc. Int. Symp. Symbolic Algebraic Comp. ISSAC’07 (2007)), 203-210 · Zbl 0712.12001
[20] de Kleine, J.; Monagan, M.; Wittkopf, A., Algorithms for the non-monic case of the sparse modular GCD algorithm, (Proc. Int. Symp. Symbolic Algebraic Comp. ISSAC’05 (2005)), 124-131 · Zbl 1360.11145
[21] Diaz, A.; Kaltofen, E., FoxBox: a system for manipulating symbolic objects in black box representation, (Proc. Int. Symp. Symbolic Algebraic Comp. ISSAC’98 (1998)), 30-37; Kaltofen, E.; Lee, W.-s.; Lobo, A. A., Early termination in Ben-or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm, (Proc. Int. Symp. Symbolic Algebraic Comp. ISSAC’00 (2000)), 192-201 · Zbl 1326.68358
[22] Cuyt, A.; Lee, W.-s., Symbolic and numerical algorithms sparse interpolation of multivariate rational functions, Theor. Comput. Sci., 412, 1445-1456 (2011) · Zbl 1211.65014
[23] Huang, Q.; Gao, X. S., Sparse polynomial interpolation with finitely many values for the coefficients; Huang, Q.; Gao, X. S., Sparse rational function interpolation with finitely many values for the coefficients · Zbl 1497.65020
[24] Zippel, R. R., Probabilistic algorithms for sparse polynomials, Lect. Notes Comput. Sci., 72, 216-226 (1979) · Zbl 0418.68040
[25] Peraro, T., Scattering amplitudes over finite fields and multivariate functional reconstruction, J. High Energy Phys., 12, Article 030 pp. (2016); Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, J. High Energy Phys., 07, Article 031 pp. (2019) · Zbl 1390.81631
[26] Klappert, J.; Lange, F., Reconstructing rational functions with FireFly, Comput. Phys. Commun., 247, Article 106951 pp. (2020); Klappert, J.; Klein, S. Y.; Lange, F., Interpolation of dense and sparse rational functions and other improvements in FireFly, Comput. Phys. Commun., 264, Article 107968 pp. (2021) · Zbl 1524.65056
[27] Chuharev, F. S., Development and implementation of multivariate rational reconstruction, (Master Thesis [Advisor A. V. Smirnov] (2022), Moscow State University), 1-25, (in Russian)
[28] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, J. Numer. Math., 107, 315-331 (2007) · Zbl 1221.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.