×

Mathematical modelling and numerical simulations of the influence of hygiene and seasons on the spread of cholera. (English) Zbl 1380.92068

Summary: Cholera is a bacterial disease, its spread is strongly influenced by environmental factors and some socio-economic factors such as hygiene standards and nutrition of the population. This paper is devoted to the modelling of the impact of climatic factors and human behaviour on the spread of cholera. The mathematical modelling incorporates the direct transmission and the indirect transmission due to environmental knowledge. Taking into account the effect of the intra-annual variation of climatic factors on the transmission of cholera, a non-autonomous ordinary differential equations is proposed to describe the dynamics of the transmission of cholera. When the intra-annual variation of climate is not incorporated into the model, the latter becomes autonomous. The basic reproductive number is calculated and the stabilities of equilibria are investigated. In the non-autonomous case, the disease extinction and uniform persistence of disease are investigated. The results suggest that the transmission and spread of cholera can be affected by climatic factors, the proportion of the undernourished individuals and the proportion of people who respect the hygiene standards. Finally, some numerical simulations are proposed using the parameters values of climatic factors and socio-economic factors of some localities situated in Lake Chad border between Chad, Cameroon and Nigeria.

MSC:

92D30 Epidemiology
91C99 Social and behavioral sciences: general topics
Full Text: DOI

References:

[1] Agarwal, M.; Verma, V., Modeling and analysis of the spread of an infectious disease cholera with environmental fluctuations, Appl. Appl. Math., 7, 406-425 (2012) · Zbl 1246.34078
[2] AL-Arydah, M.; Mwasa, A.; Tchuenche, J. M.; Smith, R. J., Modeling cholera disease with education and chlorination, J. Biol. Syst., 21, 1-20 (2013) · Zbl 1342.92222
[3] Alvarez, I.; de Castro, M.; Gomez-Gesteira, M.; Prego, R., Inter and intra-annual analysis of the salinity and temperature evolution in the galician rias baixas-ocean boundary (northwest spain), J. Geophys. Res., 110, 1-4 (2005)
[4] Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casgrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A., Hydroclimatology of dual-peak annual cholera incidence: insights from a spatially explicit model, Geophys. Res. Lett., 39, 1-6 (2012)
[5] Bompangue, D.; Giraudoux, P.; Piarroux, M.; Mutombo, G.; Shamavu, R.; B. Sudre; Mutombo, A.; Mondonge, V.; Piarroux, R., Cholera epidemics, war and disasters around goma and lake kivu: an eight-year survey, PLoS Negl. Trop. Dis., 3, 1-8 (2009)
[6] Bouchar, F., Mesure de la salinité. Ralisation d’un conductimétre (2010), Tenum Toulouse
[7] Boucher, Y.; Orata, F. D.; Alam, M., The out-of-the-delta hypothesis:dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen, Front. Microbiol., 6, 1-9 (2015)
[8] Capasso, V., Mathematical Structures of Epidemics Systems (1993), Springer-Verlag · Zbl 0798.92024
[9] Capasso, V.; Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Rev Epidemiol Sante Publique, 27, 121-132 (1979)
[10] Cohen, N.; Karib, H., Vibrio spp. dans les produits de la pêche:risques et prévention, Les Technologies de Laboratoires, 3, 4-10 (2007)
[11] Dalhat, M. M.; Isa, A. N.; Nguku, P.; Sani-Gwarzo, N.; Urban, K.; Abdulaziz, M.; Dankoli, R. S.; Nsubuga, P.; Poggensee, G., Descriptive characterization of the 2010 cholera outbreak in nigeria, 14, 1-7 (2014), BMC Public Health
[12] Dangbé, E.; Békollé, D.; Irépran, D.; Perasso, A., Impact of hygiene, famine and environment on transmission and spread of cholera, Math. Model. Nat. Phenom, 12, 2, 4-21 (2017) · Zbl 1384.92055
[13] Dangbé, E.; Perasso, A.; Irépran, D.; Békollé, D., Impact of climate factors on contact rate of vector-borne diseases: case study of malaria, Int. J. Biomath., 10, 1 (2017) · Zbl 1366.92118
[14] de Magny, G. C.; Murtugudde, R.; Sapiano, M. R.P.; Nizam, A.; Brown, C. W.; Busalacchi, A. J.; Yunus, M.; Nair, G. B.; Gil, A. I.; Lanata, C. F.; Calkins, J.; Manna, B.; Rajendran, K.; Bhattacharya, M. K.; Huq, A.; Sack, R. B.; Colwell, R. R., Environmental signatures associated with cholera epidemics, PNAS, 105, 17676-17681 (2008)
[15] Driessche, P. V.D.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[16] Dunoyer, J.; Sudre, B., Rapport de capitalisation au sujet de l’épidémie de choléra au Tchad, 2010 (2011), ACF and Laboratoire Chrono-Environnement, Université de Franche-Comté, France
[17] Eisenberg, M. C.; Shuai, Z.; Tien, J. H.; van den Driessche, P., A cholera model in a patchy environment with water and human movement, Math. Biosci., 246, 105-112 (2013) · Zbl 1309.92073
[18] Fall, A.; Iggidr, A.; Sallet, G.; Tewa, J., Epidemiological models and lyapunov functions, Math. Model. Nat. Phenom., 2, 62-83 (2007) · Zbl 1337.92206
[19] Fernández, M. A.L.; Bauernfeind, A.; Jiménez, J. D.; Gil, C. L.; Omeiri, N. E.; Guibert, D. H., Influence of temperature and rainfall on the evolution of cholera epidemics in lusaka, zambia, 2003-2006: analysis of a time series, Trans. R. Soc. Trop. Med. Hyg., 1-7 (2008)
[20] Ford, T. E.; Colwell, R. R.; Rose, J. B.; Morse, S. S.; Rogers, D. J.; Yates, T. L., Using satellite images of environmental changes to predict infectious disease outbreaks, Emerging Infect. Dis., 15, 1341-1346 (2009)
[21] Freedman, H. I.; Moson, P., Persistence definition and their connections, Proceedings of the American Mathematical Society, 109, 1025-1033 (1990) · Zbl 0695.34049
[22] Freedman, H. L.; Ruan, S.; Tang, M., Uniform persistence and flows near a closed positively invariant set, J. Dyna. Dif. Eq., 6, 583-600 (1994) · Zbl 0811.34033
[23] Fung, I. C.-H., Cholera transmission dynamic models for public health practitioners, Emerg. Themes Epidemiol., 11, 1-11 (2014)
[24] Gil, A. I.; Louis, V. R.; Rivera, I. N.G.; Lipp, E.; Huq, A.; Lanata, C. F.; Taylor, D. N.; Russek-Cohen, E.; Choopun, N.; Sack, R. B.; Colwell, R. R., Occurrence and distribution of vibrio cholerae in the coastal environment of peru, Environ. Microbiol., 6, 699-706 (2004)
[25] Gorham, T. J.; Yoo, J.; Garabed, R.; Mouhaman, A.; Lee, J., Water access, sanitation, and hygiene conditions and health outcomes among two settlement types in rural far north cameroon, Int. J. Environ. Res. Public Health, 14, 1-12 (2017)
[26] Guerrant, R. L.; Orla, R. B.; Moore, S. R.; Oria, M. O.; Lima, A. A., Malnutrition as an enteric infectious disease with long-term effects on child development, 66, 487-505 (2008), National Institutes of Health
[27] Hartley, D. M.; Jr., J. G.M.; Smith, D. L., Hyperinfectivity: a critical element in the ability of v. cholerae to cause epidemics?, PLoS Med., 3, 1, 63-69 (2006)
[28] Hashizume, M.; Armstrong, B.; Hajat, S.; Wagatsuma, Y.; Faruque, A. S.; Hayashi, T.; Sack, D. A., The effect of rainfall on the incidence of cholera in bangladesh, Epidemiology, 19, 103-110 (2008)
[29] Heesterbeck, J., A brief history of \(r_0\) and recipe for its calculation, Acta Biotheor., 50, 189-204 (2002)
[30] Hirsch, W. M.; Hanisch, H.; Gabriel, J. P., Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Commun. Pure Appl. Math., 733-753 (1985) · Zbl 0637.92008
[31] Jutla, A.; Whitcombe, E.; Hasan, N.; Haley, B.; Akanda, A.; Huq, A.; Alam, M.; Sack, R. B.; Colwell, R., Environmental factors influencing epidemic cholera, Am. Soc. Tropical Med. Hyg., 89, 597-607 (2013)
[32] Lilje, J.; Mosler, H. K.H.-J., Factors determining water treatment behavior for the prevention of cholera in chad, Am. Soc. Tropical Med. Hyg., 93, 57-65 (2015)
[33] Louis, V. R.; Russek-Cohen, E.; Choopun, N.; Rivera, I. N.G.; Gangle, B.; Jiang, S. C.; Rubin, A.; Patz, J. E.; Huq, A.; Colwell, R. R., Predictability of vibrio cholerae in chesapeake bay, Appl. Environ. Microbiol., 69, 2773-2785 (2003)
[34] Magal, P., Perturbation of a globally stable steady state and uniform persistence, J. Dyn. Diff. Eq., 21, 1-20 (2009) · Zbl 1173.37025
[35] Maheshwari, M.; Kiranmayi, K. N.B., Vibrio cholerae, Vet. World, 4, 423-428 (2011)
[36] Mosley, W. H.; Ahmed, S.; Benenson, A. S.; Ahmed, A., The relationship of vibiriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients, Bull. Wld Hlth Org, 38, 777-785 (1968)
[37] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, J.G.M. Jr., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in zimbabwe, PNAS (2011) 1088767-8772.; Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, J.G.M. Jr., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in zimbabwe, PNAS (2011) 1088767-8772.
[38] Nsagha, D. S.; Atashili, J.; Fon, P. N.; Tanue, E. A.; Ayima, C. W.; Kibu, O. D., Assessing the risk factors of cholera epidemic in the buea health district of cameroon, 15, 1-7 (2015), BMC Public Health
[39] Ochoche; Jeffrey, M., A mathematical model for the transmission dynamics of cholera with control strategy, Int. J. Scie. Technol., 2, 797-803 (2013)
[40] Passadore, C.; Giménez, L.; Acuna, A., Composition and intra-annual variation of the macroinfauna in the estuarine zone of the pando stream (uruguay), Braz. J. Biol, 67, 197-202 (2007)
[41] Pena, E. S.; Bwire, G.; Dzotsi, E.; Bonnet, M. C.; Hessel, L., Weekly epidemiological record, 91, 305-316 (2016), World Health Organization
[42] Perasso, A.; Razafison, U., Asymptotic behavior and numerical simulations for an infection load-structured epidemiological models; application to the transmission of prion pathologies, SIAM J. Appl. Math., 74, 5, 1571-1597 (2014) · Zbl 1321.35248
[43] Posny, D.; Wang, J., Modelling cholera in periodic environments, J. Biol. Dyn., 1, 1-19 (2014) · Zbl 1448.92330
[44] Rebaudet, S.; Sudre, B.; Faucher, B.; Piarroux, R., Environmental determinants of cholera outbreaks in inland africa: a systematic review of main transmission foci and propagation routes, J. Infect. Dis., 208, 46-54 (2013)
[45] Reyburn, R.; Kim, D. R.; Emch, M.; Khatib, A.; von Seidlein, L.; Ali, M., Climate variability and the outbreaks of cholera in zanzibar, east africa: a time series analysis, Am. Soc. Tropical Med. Hyg., 84, 862-869 (2011)
[46] Sasaki, S.; Suzuki, H.; Fujino, Y.; Kimura, Y.; Cheelo, M., Impact of drainage networks on cholera outbreaks in lusaka, zambia, Am. J. Public Health, 99, 1982-1989 (2009)
[47] Shuai, Z.; Tien, J. H.; van den Driessche, P., Cholera models with hyperinfectivity and temporary immunity, Bull. Math. Biol., 74, 2423-2445 (2012) · Zbl 1312.92041
[48] Shuai, Z.; van den Driessche, P., Global dynamics of cholera models with differential infectivity, Math. Biosci., 234, 118-126 (2011) · Zbl 1244.92040
[49] Taylor, A. H.; Stephéns, J. A., Seasonal and year-to-year variations in surface salinity at the nine north-atlantic 0cean weather stations, Oceanol. Acta, 3, 421-430 (1980)
[50] Thieme, H. R., Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166, 173-201 (2000) · Zbl 0970.37061
[51] Thieme, H. R., Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology (2003), Princeton · Zbl 1054.92042
[52] Thieme, H. R., Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Diff. Eq., 250, 3772-3801 (2011) · Zbl 1215.37052
[53] Tian, J. P.; Wang, J., Global stability for cholera epidemic models, Math. Biosci., 232, 31-41 (2011) · Zbl 1217.92068
[54] Unicef, Choléra epidémiologie et réponse factsheet cameroun, Unicef.; Unicef, Choléra epidémiologie et réponse factsheet cameroun, Unicef.
[55] Wang, X.; Gao, D.; Wang, J., Influence of human behavior on cholera dynamics, Math. Biosci., 267, 41-52 (2015) · Zbl 1371.92132
[56] Wonham, M. J.; de Camino-Beck, T.; Lewis, M. A., An epidemiological model for west nile virus: invasion analysis and control applications, R. Soc., 271, 501-507 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.