×

On \(q\)-deformed logistic maps. (English) Zbl 1496.37036

This paper is devoted to the study of \(q\)-deformations of the logistic family of maps with either a single or several \(q\)-deformations. The author first considers the stability of fixed points of these maps and characterizes when they are locally asymptotically stable and globally asymptotically stable. The complexity of \(q\)-deformations of maps in the logistic family is studied by computing their topological entropy. In the several \(q\)-deformations case, the author observes Parrondo’s paradox, according to which the composition of dynamically simple maps results in complex dynamical behavior. Parrondo’s paradox was also observed by J. Cánovas and M. Muñoz-Guillermo [Phys. Lett., A 383, No. 15, 1742–1754 (2019; Zbl 1476.62268)].

MSC:

37E05 Dynamical systems involving maps of the interval
37C75 Stability theory for smooth dynamical systems

Citations:

Zbl 1476.62268
Full Text: DOI

References:

[1] R. L. Adler; A. G. Konheim; M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114, 309-319 (1965) · Zbl 0127.13102 · doi:10.1090/S0002-9947-1965-0175106-9
[2] L. Alsedá, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing, 1993. · Zbl 0843.58034
[3] F. Balibrea; V. Jiménez-López, The measure of scrambled sets: A survey, Acta Univ. M. Belii Ser. Math., 7, 3-11 (1999) · Zbl 0967.37021
[4] S. Banerjee and R. Parthsarathy, A \(q\)-deformed logistic map and its implications, J. Phys. A, 44 (2011), 045104. · Zbl 1206.81047
[5] S. Behnia; M. Yahyavi; R. Habibpourbisafar, Watermarking based on discrete wavelet transform and \(q\)-deformed chaotic map, Chaos Solitons & Fractals, 104, 6-17 (2017) · Zbl 1380.94011 · doi:10.1016/j.chaos.2017.07.020
[6] F. Blanchard; E. Glasner; S. Kolyada; A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547, 51-68 (2002) · Zbl 1059.37006 · doi:10.1515/crll.2002.053
[7] L. Block; J. Keesling; S. H. Li; K. Peterson, An improved algorithm for computing topological entropy, J. Stat. Phys., 55, 929-939 (1989) · Zbl 0714.54018 · doi:10.1007/BF01041072
[8] J. S. Cánovas; A. Linero; D. Peralta-Salas, Dynamic Parrondo’s paradox, Phys. D, 218, 177-184 (2006) · Zbl 1111.37030 · doi:10.1016/j.physd.2006.05.004
[9] J. S. Cánovas and M. Muñoz, Revisiting Parrondo’s paradox for the logistic family, Fluct. Noise Lett., 12 (2013), 1350015.
[10] J. Cánovas; M. Muñoz, On the dynamics of the q-deformed logistic map, Phys. Lett. A, 383, 1742-1754 (2019) · Zbl 1476.62268 · doi:10.1016/j.physleta.2019.03.003
[11] M. Chaichian; A. P. Demichev; P. P. Kulish, Quasi-classical limit in \(q\)-deformed systems, non-commutativity and the \(q\)-path integral, Phys. Lett. A, 233, 251-260 (1997) · Zbl 1044.81624 · doi:10.1016/S0375-9601(97)00513-6
[12] W. de Melo and S. van Strien, One Dimensional Dynamics, Springer Verlag, 1993. · Zbl 0791.58003
[13] S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Chapman & Hall CRC, Boca Raton, 2008. · Zbl 1153.39002
[14] J. Graczyk; D. Sands; G. Światek, Metric attractors for smooth unimodal maps, Ann. Math., 159, 725-740 (2004) · Zbl 1055.37041 · doi:10.4007/annals.2004.159.725
[15] J. Guckenheimer, Sensitive dependence to initial conditions for one dimensional maps, Commun. Math. Phys., 70, 133-160 (1979) · Zbl 0429.58012 · doi:10.1007/BF01982351
[16] R. Jaganathan; S. Sinha, A \(q\)-deformed nonlinear map, Phys. Lett. A, 338, 277-287 (2005) · Zbl 1136.82304 · doi:10.1016/j.physleta.2005.02.042
[17] Y. A. Kuznetsov, Saddle-node bifurcation for maps, Scholarpedia3 (2008), 4399.
[18] V. I. Man’ko; G. Marmo; S. Solimeno; F. Zaccaria, Physical Nonlinear aspects of classical and quantum q-oscillators, Int. J. Mod. Phys. A, 8, 3577-3597 (1993) · Zbl 0984.81508 · doi:10.1142/S0217751X93001454
[19] T. Y. Li; J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82, 985-992 (1975) · Zbl 0351.92021 · doi:10.1080/00029890.1975.11994008
[20] E. Liz, A global picture of the Gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80, 417-434 (2018) · Zbl 1384.92051 · doi:10.1007/s11538-017-0382-2
[21] C. Luo, B.-Q. Liu and H.-S. Hou, Fractional chaotic maps with \(q\)-deformation, Appl. Math. Comput., 393 (2021), 125759. · Zbl 1508.39006
[22] J. Milnor, On the concept of attractor, Comm. Math. Phys., 99, 177-195 (1985) · Zbl 0595.58028 · doi:10.1007/BF01212280
[23] J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems, Lectures Notes in Mathematics, Springer-Verlag, 1342 1988,465-563. · Zbl 0664.58015
[24] M. Misiurewicz; W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67, 45-63 (1980) · Zbl 0445.54007 · doi:10.4064/sm-67-1-45-63
[25] V. Patidar; G. Purohit; K. K. Sud, Dynamical behavior of \(q\)-deformed Henon map, Int. J. Bifurc. Chaos, 21, 1349-1356 (2011) · Zbl 1248.37073 · doi:10.1142/S0218127411029215
[26] S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64, 201-209 (2003) · Zbl 1104.92053 · doi:10.1016/S0040-5809(03)00072-8
[27] M. D. Shrimali; S. Banerjee, Delayed \(q\)-deformed logistic map, Commun. Nonlinear Sci. Numer. Simul., 18, 3126-3133 (2013) · Zbl 1329.37041 · doi:10.1016/j.cnsns.2013.03.017
[28] D. Singer, Stable orbits and bifurcations of maps on the interval, SIAM J. Appl. Math., 35, 260-267 (1978) · Zbl 0391.58014 · doi:10.1137/0135020
[29] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297, 269-282 (1986) · Zbl 0639.54029 · doi:10.1090/S0002-9947-1986-0849479-9
[30] C. Tresser, P. Coullet and E. de Faria, Period doubling, Scholarpedia, 9 (2014), 3958.
[31] C. Tsallis, Nonextensive statistical mechanics: A brief review of its present status, An. Acad. Bras. Ci \(\hat{\text{e}}\) nc., 74 (2002), 393-414. · Zbl 1010.82001
[32] G.-C. Wu, M. N. Cankaya and S. Banerjee, Fractional q-deformed chaotic maps: A weight function approach, Chaos, 30 (2020), 121106. · Zbl 1455.39002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.