×

On the dynamics of the \(q\)-deformed logistic map. (English) Zbl 1476.62268

Summary: We analyze the \(q\)-deformed logistic map, where the \(q\)-deformation follows the scheme inspired in the Tsallis \(q\)-exponential function. We compute the topological entropy of the dynamical system, obtaining the parametric region in which the topological entropy is positive and hence the region in which chaos in the sense of T.-Y. Li and J. A. Yorke [Am. Math. Mon. 82, 985–992 (1975; Zbl 0351.92021)] exists. In addition, it is shown the existence of the so-called Parrondo’s paradox where two simple maps are combined to give a complicated dynamical behavior.

MSC:

62P35 Applications of statistics to physics
62J12 Generalized linear models (logistic models)
54C70 Entropy in general topology
94A17 Measures of information, entropy
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

Citations:

Zbl 0351.92021
Full Text: DOI

References:

[1] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487 (1988) · Zbl 1082.82501
[2] Tsallis, C., Nonextensive statistical mechanics: a brief review of its present status, An. Acad. Bras. Ciênc., 74, 393-414 (2002) · Zbl 1010.82001
[3] Plastino, A. R.; Plastino, A., Stellar polytropes and Tsallis’ entropy, Phys. Lett. A, 174, 384-386 (1993)
[4] Plastino, A. R., \( S_q\) entropy and self gravitating systems, Europhys. News, 36, 208-210 (2005)
[5] Kaniadakis, G.; Lavagno, A.; Quarati, P., Generalized statistics and solar neutrinos, Phys. Lett. B, 369, 308-312 (1996) · Zbl 1002.82507
[6] Lutz, E., Anomalous diffusion and Tsallis statistics in an optical lattice, Phys. Rev. A, 67 (2003), 051402(R)
[7] Douglas, P.; Bergamini, S.; Renzoni, F., Tunable Tsallis distributions in dissipative optical lattices, Phys. Rev. Lett., 96, Article 110601 pp. (2006)
[8] (Abe, S.; Okamoto, Y., Nonextensive Statistical Mechanics and Its Applications (2001), Springer-Verlag) · Zbl 0979.00041
[9] Abe, S.; Tirnakli, U.; Varotsos, P. A., Complexity of seismicity and nonextensive statistics, Europhys. News, 36, 206-208 (2005)
[10] Iyengar, S. V.; Balakrishnan, J., q-deformations and the dynamics of the larch bud-moth population cycles, (Nature’s Longest Threads (2014), World Scientific), 65-80, Chapter 8
[11] Edwards, A. M., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, Nature, 449, 1044-1048 (2007)
[12] Kumar, M., A cryptographic model based on logistic map and a 3-D matrix, J. Inform. Sec. Appl., 32, 47-58 (2017)
[13] Matthews, R., On the derivation of a “chaotic” encryption algorithm, Cryptologia, 13, 29-42 (1989)
[14] Baptista, M. S., Cryptography with chaos, Phys. Lett. A, 240, 50-54 (1998) · Zbl 0936.94013
[15] Singh, N.; Sinha, A., Optical image encryption using Hartley transform and logistic map, Opt. Commun., 282, 1104-1109 (2009)
[16] Yu, J.; Li, Y.; Xie, X.; Zhou, N.; Zhou, Z., Image encryption algorithm by using the logistic map and discrete fractional angular transform, Opt. Appl., 47, 141-155 (2017)
[17] Hameed, Y. M.; Ali, N. H., An efficient audio encryption based on chaotic logistic map with 3D matrix, J. Theor. Appl. Inf. Technol., 96, 5142-5152 (2018)
[18] Erguler, K.; Stumpf, P. H., Statistical interpretation of the interplay between noise and chaos, Math. Biosci., 216, 90-99 (2008) · Zbl 1151.92026
[19] Iyengar, S. V.; Balakrishnan, L., The q-deformed Tinkerbell map, Chaos, 28, Article 113102 pp. (2018) · Zbl 1403.37059
[20] Behnia, S.; Yahyavi, M.; Habibpourbisafar, R., Watermarking based on discrete wavelet transform and q-deformed chaotic map, Chaos Solitons Fractals, 104, 6-17 (2017) · Zbl 1380.94011
[21] Patidar, V.; Purohit, G.; Sud, K. K., Dynamical behavior of q-deformed Henon map, Int. J. Bifurc. Chaos, 21, 1349-1356 (2011) · Zbl 1248.37073
[22] Patidar, V.; Sud, K. K., A comparative study on the co-existing attractors in the Gaussian map and its q-deformed version, Commun. Nonlinear Sci. Numer. Simul., 14, 827-838 (2009)
[23] Banerjee, S.; Parthsarathy, R., A q-deformed logistic map and its implications, J. Phys. A, 44, Article 045104 pp. (2011) · Zbl 1206.81047
[24] Jaganathan, R.; Sudeshna, S., A q-deformed nonlinear map, Phys. Lett. A, 338, 277-287 (2005) · Zbl 1136.82304
[25] Shrimali, M. D.; Banerjee, S., Delayed q-deformed logistic map, Commun. Nonlinear Sci. Numer. Simul., 18, 3126-3133 (2013) · Zbl 1329.37041
[26] Li, T. Y.; Yorke, J. A., Period three implies chaos, Am. Math. Mon., 82, 985-992 (1975) · Zbl 0351.92021
[27] Smítal, J., Chaotic functions with zero topological entropy, Trans. Am. Math. Soc., 297, 269-282 (1986) · Zbl 0639.54029
[28] Coffman, K.; McCormick, W. D.; Swinney, H. L., Multiplicity in a chemical reaction with one-dimensional dynamics, Phys. Rev. Lett., 56, 999-1002 (1986)
[29] Guckenheimer, J., Sensitive dependence to initial conditions for one dimensional maps, Commun. Math. Phys., 70, 133-160 (1979) · Zbl 0429.58012
[30] Milnor, J., On the concept of attractor, Commun. Math. Phys., 99, 177-195 (1985) · Zbl 0595.58028
[31] Singer, D., Stable orbits and bifurcations of maps on the interval, SIAM J. Appl. Math., 35, 260-267 (1978) · Zbl 0391.58014
[32] Cánovas, J. S.; Linero, A.; Peralta-Salas, D., Dynamic Parrondo’s paradox, Phys. D: Nonlinear Phenom., 218, 177-184 (2006) · Zbl 1111.37030
[33] de Melo, W.; van Strien, S., One Dimensional Dynamics (1993), Springer Verlag · Zbl 0791.58003
[34] Martens, M.; de Melo, W.; van Strien, S., Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math., 168, 273-318 (1992) · Zbl 0761.58007
[35] Graczyk, J.; Sands, D.; Światek, G., Metric attractors for smooth unimodal maps, Ann. Math., 159, 725-740 (2004) · Zbl 1055.37041
[36] Adler, R. L.; Konheim, A. G.; McAndrew, M. H., Topological entropy, Trans. Am. Math. Soc., 114, 309-319 (1965) · Zbl 0127.13102
[37] Misiurewicz, M.; Szlenk, W., Entropy of piecewise monotone mappings, Stud. Math., 67, 45-63 (1980) · Zbl 0445.54007
[38] Blanchard, F.; Glasner, E.; Kolyada, S.; Maass, A., On Li-Yorke pairs, J. Reine Angew. Math., 547, 51-68 (2002) · Zbl 1059.37006
[39] Block, L.; Keesling, J.; Li, S. H.; Peterson, K., An improved algorithm for computing topological entropy, J. Stat. Phys., 55, 929-939 (1989) · Zbl 0714.54018
[40] Milnor, J.; Thurston, W., On iterated maps of the interval, (Dynamical Systems. Dynamical Systems, Lect. Notes Math., vol. 1342 (1988)), 465-563 · Zbl 0664.58015
[41] Cánovas, J. S.; Muñoz-Guillermo, M., Revisiting Parrondo’s paradox for the logistic family, Fluct. Noise Lett., 12, Article 1350015 pp. (2013)
[42] Keller, G., Exponents, attractors and Hopf decompositions for interval maps, Ergod. Theory Dyn. Syst., 10, 717-744 (1990) · Zbl 0715.58020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.