×

Surface groups of diffeomorphisms of the interval. (English) Zbl 1443.20062

Summary: We prove that the group of diffeomorphisms of the interval \([0, 1]\) contains surface groups whose action on \((0, 1)\) has no global fix point and such that only countably many points of the interval \((0, 1)\) have non-trivial stabiliser.

MSC:

20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37E05 Dynamical systems involving maps of the interval
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] Alonso, J.; Brum, J.; Rivas, C., Orderings and flexibility of some subgroups of homeo+(R), Journal of the London Mathematical Society, 95, 919-941, (2017) · Zbl 1475.20067 · doi:10.1112/jlms.12044
[2] Baik, H.; Koberda, T.; Kim, S.-H., Right-angled Artin subgroups of the C∞-diffeomorphism group of the real line, Israel Journal of Mathematics, 213, 175-182, (2016) · Zbl 1398.20045 · doi:10.1007/s11856-016-1307-8
[3] Bonatti, C.; Crovisier, S.; Wilkinson, A., The C1 generic diffeomorphism has trivial centralizer, Publications Mathématiques. Institut de Hautes Études Scientifiques, 109, 185-244, (2009) · Zbl 1177.37025 · doi:10.1007/s10240-009-0021-z
[4] Bonatti, C.; Monteverde, I.; Navas, A.; Rivas, C., Rigidity for C1 actions on the interval arising from hyperbolicity I: solvable groups, Mathematische Zeitschrift, 286, 919-949, (2017) · Zbl 1433.37030 · doi:10.1007/s00209-016-1790-y
[5] Breuillard, E.; Gelander, T.; Souto, J.; Storm, P., Dense embeddings of surface groups, Geometry and Topology, 10, 1373-1389, (2006) · Zbl 1132.22011 · doi:10.2140/gt.2006.10.1373
[6] Calegari, D., Leafwise smoothing laminations, Algebraic & Geometric Topology, 1, 579-585, (2001) · Zbl 0978.57011 · doi:10.2140/agt.2001.1.579
[7] Calegari, D., Nonsmoothable, locally indicable group actions on the interval, Algebraic & Geometric Topology, 8, 609-613, (2008) · Zbl 1154.37015 · doi:10.2140/agt.2008.8.609
[8] B. Deroin, A. Navas and C. Rivas, Groups, Orders, and Dynamics, arXiv:1408.5805
[9] Farb, B.; Franks, J., Group actions on one-manifolds. II. extensions of Hölder’s theorem, Transactions of the American Mathematical Society, 355, 4385-4396, (2003) · Zbl 1025.37024 · doi:10.1090/S0002-9947-03-03376-2
[10] Ghys, E., Flots d’anosov dont LES feuilletages stables sont différentiables, Annales Scientifiques de l’École Normale Supérieure, 20, 251-270, (1987) · Zbl 0663.58025 · doi:10.24033/asens.1532
[11] A. Navas, Groups of Circle Diffeomorphisms, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2011. · Zbl 1236.37002 · doi:10.7208/chicago/9780226569505.001.0001
[12] Navas, A., A finitely generated, locally indicable group with no faithful action by C1 diffeomorphisms of the interval, Geometry & Topology, 14, 573-584, (2010) · Zbl 1197.37022 · doi:10.2140/gt.2010.14.573
[13] Thurston, W., A generalization of the Reeb stability theorem, Topology, 13, 347-352, (1974) · Zbl 0305.57025 · doi:10.1016/0040-9383(74)90025-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.