×

Existence result for a nonlinear elliptic problem by topological degree in Sobolev spaces with variable exponent. (English) Zbl 07836874

Summary: The aim of this paper is to establish the existence of solutions for a nonlinear elliptic problem of the form \[ \begin{cases} \begin{aligned} &A(u) = f \quad && \text{in} \quad \Omega\\ &u = 0 \quad && \text{on} \quad {\partial \Omega} \end{aligned} \end{cases} \] where \(A(u) =-\operatorname{div} a(x, u, \nabla u)\) is a Leray-Lions operator and \(f \in W^{-1,p^{\prime} (.)} (\Omega)\) with \(p(x) \in (1, \infty)\).
Our technical approach is based on topological degree method and the theory of variable exponent Sobolev spaces.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
47H11 Degree theory for nonlinear operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] M. Ait Hammou and E. Azroul, Construction of a topological degree theory in Generalized Sobolev Spaces, J. of Univ. math., 1 no. 2 (2018), 116-129.
[2] M. Ait Hammou, E. Azroul and B. Lahmi, Existence of solutions for p(x)-Laplacian Dirichlet problem by Topological degree, Bull. Transilv. Univ. Bras¸ov Ser. III, 11(60) no. 2 (2018), 29-38. · Zbl 1438.35120
[3] M. Ait Hammou, E. Azroul and B. Lahmi, Topological degree methods for a Strongly nonlinear p(x)-elliptic problem, Rev. Colombiana Mat., 53 no. 1 (2019), 27-39. · Zbl 1423.35104
[4] M. Ait Hammou and E. Azroul, Nonlinear Elliptic Problems in Weighted Variable Exponent Sobolev Spaces by Topological Degree, Proyecciones, 38 no. 4 (2019), 733-751. · Zbl 1454.35131
[5] M. Ait Hammou and E. Azroul, Nonlinear elliptic boundary value problems by Topological degree, Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications, Studies in Systems, Decision and Control 243, Springer Nature Switzerland AG 2020, doi.org /10.1007/978-3-030-26149-8 1, 1-13.
[6] M.L. Ahmed Oubeid, A. Benkirane, M. Sidi El Vally, Nonlinear elliptic equations involving measure data in Museilak-Orlicz-Sobolev spaces, J. of Abstract Diff. Equ. and App., 4 no. 1 (2013), 43-57. · Zbl 1330.35136
[7] E. Azroul, H. Redwane and C. Yazough, Strongly nonlinear non homogeneous elliptic unilateral problems with L^1 data and no sign conditions, Electron. J. Differential Equations, 2012 no. 79 (2012), 1-20. · Zbl 1259.35108
[8] S. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat., 53 no. 2 (2009), 355-399. · Zbl 1191.35152
[9] J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ., 234 (2007), 289-310. · Zbl 1114.47049
[10] L.Boccardo and T.Gallouet, Nonlinear elliptic equations involving measure as data, J. Funct. Anal., 87 (1989), 149-169. · Zbl 0707.35060
[11] L.E.J. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math. Ann., 71 (1912), 97-115. · JFM 42.0417.01
[12] F.E. Browder, Fixed point theory and nonlinear problems., Bull. Am. Math. Soc., 9 (1983), 1-39. · Zbl 0533.47053
[13] F.E. Browder, Degree of mapping for nonlinear mappings of monotone type., Proc. Nat. Acad. Sci. USA, 80 (1983), 1771-1773. · Zbl 0533.47051
[14] K.C. Chang, Critical point theory and applications, Shanghai Scientific and Technology Press, Shanghai, 1986 (english).
[15] L. Dingien, P. Harjulehto, P. H¨astö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011). · Zbl 1222.46002
[16] G.Dong, Elliptic equations with measure data in Orlicz spaces, Elec. J. of Diff. Equ., 2008 no. 76 (2008), 1-10. · Zbl 1173.35465
[17] X. L. Fan and D. Zhao, On the Spaces L^p^(^x^)(Ω) and W^m^,^p^(^x^)(Ω); J. Math. Anal. Appl., 263 (2001), 424-446. · Zbl 1028.46041
[18] O. Kováčik and J. Rákosník, On spaces L^p^(^x^) and W^1,^p^(^x^), Czechoslovak Math. J., 41 (1991), 592-618. · Zbl 0784.46029
[19] B. Lahmi, E. Azroul and K. El Haiti, Nonlinear degenerated elliptic problems with dual data and nonstandard growth, Math. reports, 20(70)no. 1 (2018), 81-91. · Zbl 1399.35162
[20] J. Leray and J. Schauder, Topologie et equationes fonctionnelles, Ann. Sci. Ec. Norm. Super., 51 (1934), 45-78. · JFM 60.0322.02
[21] R. Landes and V. Mustonen, Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains, J. Math. Anal., 88 (1982), 25-36. · Zbl 0492.35015
[22] M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics 1748, Springer-verlag, Berlin (2000). · Zbl 0962.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.