×

Periodic forcing on degenerate Hopf bifurcation. (English) Zbl 1472.34074

In this work, the authors deal with the effect of periodic forcing on a system exhibiting a degenerate Hopf bifurcation. Two methods are employed to investigate bifurcations of periodic solution for the periodically forced system. It is obtained by averaging method that the system undergoes fold bifurcation, transcritical bifurcation, and even degenerate Hopf bifurcation of periodic solution. On the other hand, it is also shown by the Poincaré map that the system will undergo fold bifurcation, transcritical bifurcation, Neimark-Sacker bifurcation and flip bifurcation. Finally, we make a comparison between these two methods. The method is novel and enriches the bifurcation theory of delayed differential equation to some degree.

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C29 Averaging method for ordinary differential equations
37C60 Nonautonomous smooth dynamical systems

Software:

AUTO; AUTO-07P
Full Text: DOI

References:

[1] F. Barraquand; S. Louca; K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20, 1074-1092 (2017)
[2] A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115, 214-224 (1986) · Zbl 0588.34031 · doi:10.1016/0022-247X(86)90035-1
[3] J. H. Bao; Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217, 6526-6540 (2011) · Zbl 1225.34050 · doi:10.1016/j.amc.2011.01.032
[4] E. Benincà; B. Ballantine; S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112, 6389-6394 (2015)
[5] S. N. Chow; M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26, 112-159 (1977) · Zbl 0367.34033 · doi:10.1016/0022-0396(77)90101-2
[6] Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. · Zbl 1395.34075
[7] Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. · Zbl 1447.34043
[8] E. J. Doedel and B. E. Oldeman, AUTO-07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012.
[9] W. W. Farr; C. Z. Li; I. S. Labouriau; W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem, SIAM J. Math. Anal., 20, 13-30 (1989) · Zbl 0682.58035 · doi:10.1137/0520002
[10] J. M. González-Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF-B, J. Theor. Biol., 335, 283-294 (2013) · Zbl 1397.92029 · doi:10.1016/j.jtbi.2013.06.027
[11] P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50, 1-12 (1993) · Zbl 0774.34025 · doi:10.1093/imamat/50.1.1
[12] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. · Zbl 0717.34001
[13] J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time-periodic forcing, J. Differ. Equations, 57, 172-199 (1985) · Zbl 0516.34042 · doi:10.1016/0022-0396(85)90076-2
[14] W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65, 95-112 (1981) · Zbl 0487.34041 · doi:10.1002/sapm198165295
[15] Y. A. Kuznetsov; S. Muratori; S. Rinaldi, Bifurcations and chaos in a periodic predator-prey model, Int. J. Bifurcat. Chaos, 2, 117-128 (1992) · Zbl 1126.92316 · doi:10.1142/S0218127492000112
[16] X. P. Li; J. L. Ren; S. A. Campbell, How seasonal forcing influences the complexity of a predator-prey system, Discrete Cont. Dyn.-B, 23, 785-807 (2018) · Zbl 1403.37095 · doi:10.3934/dcdsb.2018043
[17] M. A. McKarnin; L. D. Schmidt; R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43, 2833-2844 (1988) · doi:10.1016/0009-2509(88)80026-5
[18] N. S. Namachchivaya; S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47, 15-39 (1987) · Zbl 0625.70022 · doi:10.1137/0147002
[19] L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Appl. Math., 17, 698-724 (1969) · Zbl 0177.12203 · doi:10.1137/0117065
[20] J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. · Zbl 1388.37080
[21] J. L. Ren; L. P. Yu, Codimension-two bifurcation, chaos control in a discrete-time information diffusion model, J. Nonlinear Sci., 26, 1895-1931 (2016) · Zbl 1356.93053 · doi:10.1007/s00332-016-9323-8
[22] J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator-prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. · Zbl 1352.34078
[23] S. Rosenblat; D. S. Cohen, Periodically perturbed bifurcation-1. Simple bifurcation, Stud. Appl. Math., 63, 1-23 (1980) · Zbl 0442.34040 · doi:10.1002/sapm19806311
[24] S. Rosenblat; D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64, 143-175 (1981) · Zbl 0482.34037 · doi:10.1002/sapm1981642143
[25] A. Rego-Costa; F. Debarre; L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72, 375-385 (2018) · doi:10.1111/evo.13407
[26] J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007. · Zbl 1128.34001
[27] Y. W. Tao; X. P. Li; J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94, 2511-2525 (2018) · Zbl 1422.34175 · doi:10.1007/s11071-018-4506-5
[28] Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, (World Scientific), 1996. · Zbl 0844.34006
[29] D. M. Xiao; H. P. Zhu, Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66, 802-819 (2006) · Zbl 1109.34034 · doi:10.1137/050623449
[30] Y. Y. Zhang; M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10, 1272-1306 (2011) · Zbl 1247.34059 · doi:10.1137/10078637X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.