×

A repeated yielding model under periodic perturbation. (English) Zbl 1422.34175

Summary: The Ananthakrishna model, seeking to explain the phenomenon of repeated yielding of materials, is studied with or without periodic perturbation. For the unforced model, Hopf bifurcation, degenerate Hopf bifurcation and saddle-node bifurcation are detected. For the periodically forced model, two elementary periodic mechanisms are analyzed corresponding to five bifurcation cases of the unforced one. Rich dynamical behaviors arise, including stable and unstable periodic solutions of different periods, quasi-periodic solutions, chaos through torus destruction or cascade of period doublings. Moreover, even small change of a parameter can lead to bifurcation of different periodic solutions. Finally, according to the forced Ananthakrishna model, four types of stress-time curves are simulated, which can well interpret various experimental phenomena of repeated yielding.

MSC:

34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Zhang, Y., Liu, J.P., Chen, S.Y., Xie, X., Liaw, P.K., Dahmen, K.A., Qiao, J.W., Wang, Y.L.: Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358-460 (2017) · doi:10.1016/j.pmatsci.2017.06.004
[2] Lee, S.Y., Lee, S.I., Hwang, B.: Effect of strain rate on tensile and serration behaviors of an austenitic Fe-22Mn-0.7C twinning-induced plasticity steel. Mater. Sci. Eng. A 711, 22-28 (2018) · doi:10.1016/j.msea.2017.10.074
[3] Serajzadeh, S., Akhgar, J.M.: A study on strain ageing during and after warm rolling of a carbon steel. Mater. Lett. 62(6-7), 946-948 (2008) · doi:10.1016/j.matlet.2007.07.017
[4] Hu, Q., Zhang, Q.C., Cao, P.T., Fu, S.H.: Thermal analyses and simulations of the type A and type B Portevin-Le Chatelier effects in an Al-Mg alloy. Acta Mater. 60(4), 1647-1657 (2012) · doi:10.1016/j.actamat.2011.12.003
[5] Cai, Y.L., Yang, S.L., Wang, Y.H., Fu, S.H., Zhang, Q.C.: Characterization of the deformation behaviors associated with the serrated flow of a 5456 Al-based alloy using two orthogonal digital image correlation systems. Mater. Sci. Eng. A 664, 155-164 (2016) · doi:10.1016/j.msea.2016.04.003
[6] Raia, R.K., Sahub, J.K.: Mechanism of serrated flow in a cast nickel base superalloy. Mater. Lett. 210, 298-300 (2018) · doi:10.1016/j.matlet.2017.09.053
[7] Moshtaghin, R.S., Asgari, S.: The characteristics of serrated flow in superalloy IN738LC. Mater. Sci. Eng. A 486(1-2), 376-380 (2008) · doi:10.1016/j.msea.2007.09.061
[8] Sarmah, R., Ananthakrishna, G., Sun, B.A., Wang, W.H.: Hidden order in serrated flow of metallic glasses. Acta Mater. 59(11), 4482-4493 (2011) · doi:10.1016/j.actamat.2011.03.071
[9] Ren, J.L., Chen, C., Wang, G., Mattern, N., Eckert, J.: Dynamics of serrated flow in a bulk metallic glass. AIP Adv. 1(3), 2158-3226 (2011) · doi:10.1063/1.3643218
[10] Chen, S.Y., Yu, L.P., Ren, J.L., Xie, X., Li, X.P., Xu, Y., Zhao, G.F., Li, P.Z., Yang, F.Q., Ren, Y., Liaw, P.K.: Self-similar random process and chaotic behavior in serrated flow of high-entropy alloys. Sci. Rep. UK 6, 29798 (2016) · doi:10.1038/srep29798
[11] Guo, X.X., Xie, X., Ren, J.L., Laktionova, M., Tabachnikova, E., Yu, L.P., Cheung, W.S., Dahmen, K.A., Liaw, P.K.: Plastic dynamics of the \[Al_{0.5}CoCrCuFeNi\] Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl. Phys. Lett. 111(25), 251905 (2017) · doi:10.1063/1.5004241
[12] Ren, J.L., Chen, C., Wang, G., Liaw, P.K.: Transition of temporal scaling behavior in percolation assisted shear-branching structure during plastic deformation. Sci. Rep. UK 7, 45083 (2017) · doi:10.1038/srep45083
[13] Chen, C., Ren, J.L., Wang, G., Dahmen, K.A., Liaw, P.K.: Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Phys. Rev. E 92(1), 012113 (2015) · doi:10.1103/PhysRevE.92.012113
[14] Ren, J.L., Chen, C., Liu, Z.Y., Li, R., Wang, G.: Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys. Rev. B 86(13), 134303 (2012) · doi:10.1103/PhysRevB.86.134303
[15] Ren, J.L., Chen, C., Cheung, W.S., Sun, B.A., Mattern, N., Siegmund, S., Eckert, J.: Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model. J. Appl. Phys. 116(3), 033520 (2014) · doi:10.1063/1.4890720
[16] Ananthakrishna, G., Sahoo, D.: A model based on nonlinear oscillations to explain jumps on creep curves. J. Phys. D Appl. Phys. 14(11), 2081-2090 (1981) · doi:10.1088/0022-3727/14/11/015
[17] Valsakumar, M.C., Ananthakrishna, G.: A model based on nonlinear oscillations to explain jumps on creep curves: II. Approximate solutions. J. Phys. D Appl. Phys. 16(6), 1055-1068 (1983) · doi:10.1088/0022-3727/16/6/014
[18] Ananthakrishna, G., Valsakumar, M.C.: Repeated yield drop phenomenon: a temporal dissipative structure. Phys. D Appl. Phys. 15(12), L171-L175 (1982) · doi:10.1088/0022-3727/15/12/003
[19] Ananthakrishna, G.: Dislocation dynamics and cooperative behaviour of dislocations. Solid State Phenom. 3-4, 357-367 (1991) · doi:10.4028/www.scientific.net/SSP.3-4.357
[20] Ananthakrishna, G., Valsakumar, M.C.: Chaotic flow in a model for repeated yielding. Phys. Lett. A 95(2), 69-71 (1983) · doi:10.1016/0375-9601(83)90141-X
[21] Satyanarayana, S.V.M., Sridhar, V., Koka, S.: Characterization of chaos in a serrated plastic flow model. Pramana-J. Phys. 48(4), 871-882 (1997) · doi:10.1007/BF02845592
[22] Cottrell, A.H., Bilby, B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. R. Soc. Lond. Ser. A 62(1), 49-62 (1949) · doi:10.1088/0370-1298/62/1/308
[23] Li, X.P., Ren, J.L., Campbell, S.A., Wolkowicz, G.S.K., Zhu, H.P.: How seasonal forcing influences the complexity of a predated-pery system. Discrete Contin. Dyn. B 23(2), 785-807 (2018) · Zbl 1403.37095
[24] Ren, J.L., Li, X.P.: Bifurcations in a seasonally forced predator-prey model with generalized Holling type IV functional response. Int. J. Bifurc. Chaos 26(12), 1650203 (2016) · Zbl 1352.34078 · doi:10.1142/S0218127416502035
[25] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (2004) · Zbl 1082.37002 · doi:10.1007/978-1-4757-3978-7
[26] Gillis, P.P., Gilman, J.J.: Dynamical dislocation theory of crystal plasticity. I. The yield stress. J. Appl. Phys. 36(11), 3370-3380 (1965) · doi:10.1063/1.1702998
[27] Sahoo, D., Ananthakrishna, G.: A phenomenological dislocation transformation model for the mobile fraction in simple systems. J. Phys. D Appl. Phys. 15(8), 1439-1449 (1982) · doi:10.1088/0022-3727/15/8/015
[28] Cottrell, A.H.: A note on the PorteVin-Le Chatelier effect. Philos. Mag. 44(355), 829-832 (1953) · doi:10.1080/14786440808520347
[29] Bekele, M., Ananthakrishna, G.: High-order amplitude equation for steps on the creep curve. Phys. Rev. E 56(6), 6917-6928 (1997) · Zbl 1401.81026 · doi:10.1103/PhysRevE.56.6917
[30] Rajesh, S., Ananthakrishna, G.: Relaxation oscillations and negative strain rate sensitivity in the Portevin-Le Chatelier effect. Phys. Rev. E 61(4), 3664-3674 (2000) · doi:10.1103/PhysRevE.61.3664
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.