×

Isogeometric topology optimization of strain gradient materials. (English) Zbl 1507.74315

Summary: In this paper optimal topologies of isotropic linear elastic strain gradient materials are investigated by means of isogeometric topology optimization. The employment of strain gradient theory allows not only to capture the microstructural effects of materials but also to regularize stress/strain concentration phenomena and to address the so-called wedge forces. Isogeometric analysis is used in order to meet the requirements of higher-order continuity of strain gradient elasticity theory. For the purpose of determining the constitutive parameters of strain gradient materials, a novel experiment is conceived by using the Digital Image Correlation (DIC) technique. The so-called SIMP (Solid Isotropic Material with Penalization) method is applied to interpolate the material stiffness tensors (including the fourth-order and the sixth-order stiffness tensor) by power law with penalty. Benchmark numerical experiments are conducted to illustrate the computational effectiveness and numerical robustness of the proposed method.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics

Software:

top88.m; top.m; ESOFRAME
Full Text: DOI

References:

[1] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[2] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011) · Zbl 1274.74310
[3] Groen, J. P.; Sigmund, O., Homogenization-based topology optimization for high-resolution manufacturable microstructures, Internat. J. Numer. Methods Engrg., 113, 8, 1148-1163 (2018) · Zbl 07874747
[4] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[5] van Dijk, N. P.; Maute, K.; Langelaar, M.; Van Keulen, F., Level-set methods for structural topology optimization: A review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[6] Xie, Y. M.; Steven, G. P., Basic evolutionary structural optimization, (Evolutionary Structural Optimization (1997), Springer), 12-29 · Zbl 0898.73003
[7] Huang, X.; Xie, Y., A new look at ESO and BESO optimization methods, Struct. Multidiscip. Optim., 35, 1, 89-92 (2008)
[8] Liebold, C.; Müller, W. H., Comparison of gradient elasticity models for the bending of micromaterials, Comput. Mater. Sci., 116, 52-61 (2016)
[9] Lakes, R.; Drugan, W., Bending of a cosserat elastic bar of square cross section: Theory and experiment, J. Appl. Mech., 82, 9 (2015) · Zbl 1391.74002
[10] Anderson, W.; Lakes, R., Size effects due to cosserat elasticity and surface damage in closed-cell polymethacrylimide foam, J. Mater. Sci., 29, 24, 6413-6419 (1994)
[11] Lakes, R., Experimental microelasticity of two porous solids, Int. J. Solids Struct., 22, 1, 55-63 (1986)
[12] Lakes, R. S., Size effects and micromechanics of a porous solid, J. Mater. Sci., 18, 9, 2572-2580 (1983)
[13] Dang, C.; Chou, J.-P.; Dai, B.; Chou, C.-T.; Yang, Y.; Fan, R.; Lin, W.; Meng, F.; Hu, A.; Zhu, J., Achieving large uniform tensile elasticity in microfabricated diamond, Science, 371, 6524, 76-78 (2021)
[14] Zhang, W.; Sun, S., Scale-related topology optimization of cellular materials and structures, Internat. J. Numer. Methods Engrg., 68, 9, 993-1011 (2006) · Zbl 1127.74035
[15] Altenbach, H.; Eremeyev, V. A., Generalized Continua-from the Theory to Engineering Applications, Vol. 541 (2012), Springer
[16] Mindlin, R. D.; Eshel, N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[17] Toupin, R. A., Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17, 85-112 (1964) · Zbl 0131.22001
[18] Eringen, A. C.; Suhubi, E., Nonlinear theory of simple micro-elastic solids—I, Internat. J. Engrg. Sci., 2, 2, 189-203 (1964) · Zbl 0138.21202
[19] dell’Isola, F.; Corte, A. D.; Giorgio, I., Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives, Math. Mech. Solids, 22, 4, 852-872 (2017) · Zbl 1371.74024
[20] Altenbach, H.; Maugin, G. A.; Erofeev, V., Mechanics of Generalized Continua, Vol. 7 (2011), Springer · Zbl 1276.74004
[21] Tekoğlu, C.; Onck, P. R., Size effects in two-dimensional voronoi foams: A comparison between generalized continua and discrete models, J. Mech. Phys. Solids, 56, 12, 3541-3564 (2008) · Zbl 1171.74411
[22] Eringen, A. C., Mechanics of micromorphic materials, (Applied Mechanics (1966), Springer), 131-138
[23] Liebold, C.; Müller, W. H., Are microcontinuum field theories of elasticity amenable to experiments? A review of some recent results, Differential Geometry and Continuum Mechanics, 255-278 (2015) · Zbl 1354.74017
[24] Eremeyev, V. A.; Lebedev, L. P.; Altenbach, H., Foundations of Micropolar Mechanics (2012), Springer Science & Business Media
[25] dell’Isola, F.; Sciarra, G.; Vidoli, S., Generalized hooke’s law for isotropic second gradient materials, Proc. R. Soc. A: Math. Phys. Eng. Sci., 465, 2107, 2177-2196 (2009) · Zbl 1186.74019
[26] Askes, H.; Aifantis, E. C., Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., 48, 13, 1962-1990 (2011)
[27] Mindlin, R.; Tiersten, H., Effects of Couple-Stresses in Linear ElasticityTechnical Report (1962), COLUMBIA UNIV NEW YORK
[28] Neff, P.; Ghiba, I.-D.; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: The relaxed linear micromorphic continuum, Contin. Mech. Thermodyn., 26, 5, 639-681 (2014) · Zbl 1341.74135
[29] Rovati, M.; Veber, D., Optimal topologies for micropolar solids, Struct. Multidiscip. Optim., 33, 1, 47-59 (2007)
[30] Bruggi, M.; Taliercio, A., Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization, Struct. Multidiscip. Optim., 46, 4, 549-560 (2012) · Zbl 1274.74321
[31] Veber, D.; Taliercio, A., Topology optimization of three-dimensional non-centrosymmetric micropolar bodies, Struct. Multidiscip. Optim., 45, 4, 575-587 (2012) · Zbl 1274.74406
[32] Bruggi, M.; Zega, V.; Corigliano, A., Synthesis of auxetic structures using optimization of compliant mechanisms and a micropolar material model, Struct. Multidiscip. Optim., 55, 1, 1-12 (2017)
[33] Liu, S.; Su, W., Topology optimization of couple-stress material structures, Struct. Multidiscip. Optim., 40, 1, 319-327 (2010) · Zbl 1274.74364
[34] Su, W.; Liu, S., Size-dependent optimal microstructure design based on couple-stress theory, Struct. Multidiscip. Optim., 42, 2, 243-254 (2010)
[35] Su, W.; Liu, S., Topology design for maximization of fundamental frequency of couple-stress continuum, Struct. Multidiscip. Optim., 53, 3, 395-408 (2016)
[36] Su, W.; Liu, S., Size-dependent microstructure design for maximal fundamental frequencies of structures, Struct. Multidiscip. Optim., 1-15 (2020)
[37] Li, L.; Khandelwal, K., Topology optimization of structures with length-scale effects using elasticity with microstructure theory, Comput. Struct., 157, 165-177 (2015)
[38] Li, L.; Zhang, G.; Khandelwal, K., Topology optimization of structures with gradient elastic material, Struct. Multidiscip. Optim., 56, 2, 371-390 (2017)
[39] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Engrg., 313, 239-258 (2017) · Zbl 1439.74414
[40] Makvandi, R.; Reiher, J. C.; Bertram, A.; Juhre, D., Isogeometric analysis of first and second strain gradient elasticity, Comput. Mech., 61, 3, 351-363 (2018) · Zbl 1451.74218
[41] Reiher, J. C.; Giorgio, I.; Bertram, A., Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity, J. Eng. Mech., 143, 2, Article 04016112 pp. (2017)
[42] Auffray, N.; dell’Isola, F.; Eremeyev, V. A.; Madeo, A.; Rosi, G., Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math. Mech. Solids, 20, 4, 375-417 (2015) · Zbl 1327.76008
[43] Barchiesi, E.; Yang, H.; Tran, C.; Placidi, L.; Müller, W. H., Computation of brittle fracture propagation in strain gradient materials by the fenics library, Math. Mech. Solids, Article 1081286520954513 pp. (2020)
[44] Zybell, L.; Mühlich, U.; Kuna, M.; Zhang, Z., A three-dimensional finite element for gradient elasticity based on a mixed-type formulation, Comput. Mater. Sci., 52, 1, 268-273 (2012)
[45] Zervos, A.; Papanicolopulos, S.-A.; Vardoulakis, I., Two finite-element discretizations for gradient elasticity, J. Eng. Mech., 135, 3, 203-213 (2009) · Zbl 1156.74382
[46] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[47] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[48] Hassani, B.; Tavakkoli, S. M.; Moghadam, N., Application of isogeometric analysis in structural shape optimization, Sci. Iran., 18, 4, 846-852 (2011)
[49] Li, B.; Ding, S.; Guo, S.; Su, W.; Cheng, A.; Hong, J., A novel isogeometric topology optimization framework for planar compliant mechanisms, Appl. Math. Model., 92, 931-950 (2021) · Zbl 1481.74619
[50] Liu, H.; Yang, D.; Hao, P.; Zhu, X., Isogeometric analysis based topology optimization design with global stress constraint, Comput. Methods Appl. Mech. Engrg., 342, 625-652 (2018) · Zbl 1440.74301
[51] Hou, W.; Gai, Y.; Zhu, X.; Wang, X.; Zhao, C.; Xu, L.; Jiang, K.; Hu, P., Explicit isogeometric topology optimization using moving morphable components, Comput. Methods Appl. Mech. Engrg., 326, 694-712 (2017) · Zbl 1439.74275
[52] Kumar, A. V.; Parthasarathy, A., Topology optimization using B-spline finite elements, Struct. Multidiscip. Optim., 44, 4, 471 (2011) · Zbl 1274.74358
[53] Hassani, B.; Khanzadi, M.; Tavakkoli, S. M., An isogeometrical approach to structural topology optimization by optimality criteria, Struct. Multidiscip. Optim., 45, 2, 223-233 (2012) · Zbl 1274.74339
[54] Wang, Y.; Xu, H.; Pasini, D., Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Engrg., 316, 568-585 (2017) · Zbl 1439.74301
[55] Xu, M.; Xia, L.; Wang, S.; Liu, L.; Xie, X., An isogeometric approach to topology optimization of spatially graded hierarchical structures, Compos. Struct., 225, Article 111171 pp. (2019)
[56] Xu, M.; Wang, S.; Xie, X., Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency, Front. Mech. Eng., 14, 2, 222-234 (2019)
[57] Gao, J.; Xue, H.; Gao, L.; Luo, Z., Topology optimization for auxetic metamaterials based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 352, 211-236 (2019) · Zbl 1441.74160
[58] Xie, X.; Yang, A.; Wang, Y.; Jiang, N.; Wang, S., Fully adaptive isogeometric topology optimization using MMC based on truncated hierarchical B-splines, Struct. Multidiscip. Optim., 63, 6, 2869-2887 (2021)
[59] Gao, J.; Xiao, M.; Zhang, Y.; Gao, L., A comprehensive review of isogeometric topology optimization: Methods, applications and prospects, Chin. J. Mech. Eng., 33, 1, 1-14 (2020)
[60] Wang, Y.; Wang, Z.; Xia, Z.; Poh, L. H., Structural design optimization using isogeometric analysis: A comprehensive review, CMES Comput. Model. Eng. Sci., 117, 3, 455-507 (2018)
[61] Ganghoffer, J.; Reda, H., A variational approach of homogenization of heterogeneous materials towards second gradient continua, Mech. Mater., 158, Article 103743 pp. (2021)
[62] Ma, H.; Gao, X.-L., A new homogenization method based on a simplified strain gradient elasticity theory, Acta Mech., 225, 4, 1075-1091 (2014) · Zbl 1401.74236
[63] Yang, H.; Abali, B. E.; Timofeev, D.; Müller, W. H., Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis, Contin. Mech. Thermodyn., 1-20 (2019)
[64] Yvonnet, J.; Auffray, N.; Monchiet, V., Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior, Int. J. Solids Struct., 191, 434-448 (2020)
[65] Peerlings, R.; Fleck, N., Computational evaluation of strain gradient elasticity constants, Int. J. Multiscale Comput. Eng., 2, 4 (2004)
[66] Giorgio, I., Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures, Z. Angew. Math. Phys., 67, 4, 1-17 (2016) · Zbl 1359.74018
[67] Réthoré, J.; Kaltenbrunner, C.; Dang, T. B.T.; Chaudet, P.; Kuhn, M., Gradient-elasticity for honeycomb materials: Validation and identification from full-field measurements, Int. J. Solids Struct., 72, 108-117 (2015)
[68] H. Yang, D. Timofeev, B.E. Abali, B. Li, W.H. Müller, Verification of strain gradient elasticity computation by analytical solutions, ZAMM - J. Appl. Math. Mech. / Z. Angew. Math. Mech. e202100023.
[69] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[70] Ruess, M.; Schillinger, D.; Oezcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[71] Dittmann, M.; Schuß, S.; Wohlmuth, B.; Hesch, C., Crosspoint modification for multi-patch isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 360, Article 112768 pp. (2020) · Zbl 1441.74236
[72] Beer, G.; Bordas, S., Isogeometric Methods for Numerical Simulation, Vol. 240 (2015), Springer · Zbl 1317.74004
[73] Yang, H.; Abali, B. E.; Müller, W. H., On finite element analysis in generalized mechanics, (International Summer School-Conference “Advanced Problems in Mechanics” (2019), Springer), 233-245
[74] Zhang, S.; Lu, Y.; Shen, Z.; Zhou, C.; Lou, Y., Prediction of ductile fracture for Al6016-T4 with a ductile fracture criterion: Experiment and simulation, Int. J. Damage Mech., 29, 8, 1199-1221 (2020)
[75] Li, L.-G.; Liang, J.; Shi, B.-Q.; Guo, C.; Hu, H., Grid-based photogrammetry system for large scale sheet metal strain measurement, Optik, 125, 19, 5508-5514 (2014)
[76] Tang, Z.; Liang, J.; Xiao, Z.; Guo, C., Large deformation measurement scheme for 3D digital image correlation method, Opt. Lasers Eng., 50, 2, 122-130 (2012)
[77] Tang, Z.-Z.; Liang, J.; Xiao, Z.-Z.; Guo, C.; Hu, H., Three-dimensional digital image correlation system for deformation measurement in experimental mechanics, Opt. Eng., 49, 10, Article 103601 pp. (2010)
[78] Andreaus, U.; dell’Isola, F.; Giorgio, I.; Placidi, L.; Lekszycki, T.; Rizzi, N. L., Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity, Internat. J. Engrg. Sci., 108, 34-50 (2016) · Zbl 1423.74089
[79] Song, J.; Wei, Y., A method to determine material length scale parameters in elastic strain gradient theory, J. Appl. Mech., 87, 3, Article 031010 pp. (2020)
[80] Shekarchizadeh, N.; Abali, B. E.; Barchiesi, E.; Bersani, A. M., Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., Article e202000277 pp. (2021) · Zbl 07813141
[81] Vasiliev, V.; Lurie, S.; Solyaev, Y., New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity, Eng. Fract. Mech., 258, Article 108080 pp. (2021)
[82] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2013), Springer Science & Business Media · Zbl 1059.74001
[83] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 401-424 (2007)
[84] Sigmund, O.; Maute, K., Sensitivity filtering from a continuum mechanics perspective, Struct. Multidiscip. Optim., 46, 4, 471-475 (2012) · Zbl 1274.74391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.