×

Computational modeling of size-dependent superelasticity of shape memory alloys. (English) Zbl 1482.74043

Summary: We propose a nonlocal continuum model to describe the size-dependent superelastic responses observed in recent experiments of shape memory alloys. The modeling approach extends a superelasticity formulation based on the martensitic volume fraction, and combines it with gradient plasticity theories. Size effects are incorporated through two internal length scales, an energetic length scale and a dissipative length scale, which correspond to the gradient terms in the free energy and the dissipation, respectively. We also propose a computational framework based on a variational formulation to solve the coupled governing equations resulting from the nonlocal superelastic model. Within this framework, a robust and scalable algorithm is implemented for large scale three-dimensional problems. A numerical study of the grain boundary constraint effect shows that the model is able to capture the size-dependent stress hysteresis and strain hardening during the loading and unloading cycles in polycrystalline SMAs.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74E15 Crystalline structure

Software:

PARDISO

References:

[1] Abeyaratne, R.; Chu, C.; James, R. D., Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy, Philos. Mag. A, 73, 457-497 (1996)
[2] Abeyaratne, R.; Knowles, J., A continuum model of a thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids, 41, 541-571 (1993) · Zbl 0825.73058
[3] Abeyaratne, R.; Knowles, J. K., Evolution of Phase Transitions: A Continuum Theory (2006), Cambridge University Press: Cambridge University Press New York
[4] Ahadi, A.; Sun, Q., Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size, Appl. Phys. Lett., 103, 021902 (2013)
[5] Ahadi, A.; Sun, Q., Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Mater., 76, 186-197 (2014)
[6] Anand, L.; Gurtin, M., Thermal effects in the superelasticity crystalline shape-memory materials, J. Mech. Phys. Solids, 51, 1015-1058 (2003) · Zbl 1032.74019
[7] Anand, L.; Gurtin, M. E.; Lele, S. P.; Gething, C., A one-dimensional theory of strain-gradient plasticityformulation, analysis, numerical results, J. Mech. Phys. Solids, 53, 1789-1826 (2005) · Zbl 1120.74350
[9] Aubry, S.; Fago, M.; Ortiz, M., A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials, Comput. Methods Appl. Mech. Eng., 192, 2823-2843 (2003) · Zbl 1054.74697
[10] Auricchio, F.; Taylor, R.; Lubliner, J., Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput. Methods Appl. Mech. Eng., 146, 281-312 (1997) · Zbl 0898.73019
[11] Ball, J.; James, R., Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal., 100, 13-52 (1987) · Zbl 0629.49020
[12] Bertsekas, D. P., Nonlinear Programming (1999), Athena Scientific: Athena Scientific Belmont · Zbl 1015.90077
[13] Bhattacharya, K., Microstructure of Martensite: Why it Forms and how it Gives Rise to the Shape-memory Effect (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1109.74002
[14] Bhattacharya, K.; Conti, S.; Zanzotto, G.; Zimmer, J., Crystal symmetry and the reversibility of martensitic transformations, Nature, 428, 55-59 (2004)
[15] Boyd, J. G.; Lagoudas, D. C., A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, Int. J. Plast., 12, 805-842 (1996) · Zbl 0898.73020
[16] Brinson, L., One-dimensional constitutive behavior of shape memory alloysthermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct., 4, 229-242 (1993)
[17] Brinson, L.; Lammering, R., Finite element analysis of the behavior of shape memory alloys and their applications, Int. J. Solids Struct., 30, 3261-3280 (1993) · Zbl 0800.73484
[18] Chen, Y.; Schuh, C. A., Size effects in shape memory alloy microwires, Acta Mater., 59, 537-553 (2011)
[19] Christ, D.; Reese, S., A finite element model for shape memory alloys considering thermomechanical couplings at large strains, Int. J. Solids Struct., 46, 3694-3709 (2009) · Zbl 1183.74265
[20] Cuitiño, A.; Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics, Eng. Comput., 9, 437-451 (1992)
[22] Falk, F., Model free energy, mechanics, and thermodynamics of shape memory alloys, Acta Metall., 28, 1773-1780 (1980)
[23] Falk, F., Ginzburg-Landau theory of static domain walls in shape-memory alloys, Z. Phys. B Condens. Matter, 51, 177-185 (1983)
[24] Falk, F.; Konopka, P., Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys, J. Phys. Condens. Matter, 2, 61 (1990)
[25] Fleck, N.; Hutchinson, J., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825-1857 (1993) · Zbl 0791.73029
[26] Fleck, N.; Muller, G.; Ashby, M.; Hutchinson, J., Strain gradient plasticitytheory and experiment, Acta Metall. Mater., 42, 475-487 (1994)
[27] Frémond, M., Non-Smooth Thermomechanics (2001), Springer: Springer Berlin · Zbl 0990.80001
[28] Frick, C. P.; Orso, S.; Arzt, E., Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars, Acta Mater., 55, 3845-3855 (2007)
[29] Gao, H.; Huang, Y.; Nix, W.; Hutchinson, J., Mechanism-based strain gradient plasticity I. Theory, J. Mech. Phys. Solids, 47, 1239-1263 (1999) · Zbl 0982.74013
[30] Golub, G. H.; VanLoan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore · Zbl 0865.65009
[31] Govindjee, S.; Miehe, C., A multi-variant martensitic phase transformation modelformulation and numerical implementation, Comput. Methods Appl. Mech. Eng., 191, 215-238 (2001) · Zbl 1007.74061
[32] Greer, J. R.; Hosson, J. T.D., Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect, Prog. Mater. Sci., 56, 654-724 (2011)
[33] Gudmundson, P., A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52, 1379-1406 (2004) · Zbl 1114.74366
[34] Gurtin, M.; Anand, L., A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part ISmall deformations, J. Mech. Phys. Solids, 53, 1624-1649 (2005) · Zbl 1120.74353
[35] Gurtin, M.; Anand, L., A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part IIFinite deformations, Int. J. Plast., 21, 2297-2318 (2005) · Zbl 1101.74316
[36] Han, W.; Reddy, B. D., Plasticity: Mathematical Theory and Numerical Analysis (2013), Springer: Springer New York · Zbl 1258.74002
[37] Hane, K.; Shield, T., Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys, Acta Mater., 47, 2602-2617 (1999)
[38] Hill, R., On constitutive inequalities for simple materials—I, J. Mech. Phys. Solids, 16, 229-242 (1968) · Zbl 0162.28702
[39] Huang, Y.; Gao, H.; Nix, W.; Hutchinson, J., Mechanism-based strain gradient plasticity II. Analysis, J. Mech. Phys. Solids, 48, 99-128 (2000) · Zbl 0990.74016
[40] Hughes, T. J., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications: Dover Publications Mineola · Zbl 1191.74002
[41] Ishida, A.; Sato, M., Thickness effect on shape memory behavior of Ti-50.0at.
[42] James, R.; Hane, K., Martensitic transformations and shape memory alloys, Acta Mater., 48, 197-222 (2000)
[43] Juhasz, L.; Schnack, E.; Hesebeck, O.; Andrä, H., Macroscopic modeling of shape memory alloys under non-proportional thermo-mechanical loadings, J. Intell. Mater. Syst. Struct., 13, 825-836 (2002)
[44] Jung, Y.; Papadopoulos, P.; Ritchie, R., Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys, Int. J. Numer. Methods Eng, 60, 429-460 (2004) · Zbl 1060.74579
[45] (Lagoudas, D. C., Shape Memory AlloysModeling and Engineering Applications (2008), Springer: Springer New York)
[46] Lagoudas, D. C.; Entchev, P. B.; Popov, P.; Patoor, E.; Gao, X., L. C.B., Shape memory alloys, Part IIModeling of polycrystals, Mech. Mater., 38, 430-462 (2006)
[47] Lele, S. P.; Anand, L., A small-deformation strain-gradient theory for isotropic viscoplastic materials, Philos. Mag., 88, 3655-3689 (2008)
[48] Lele, S. P.; Anand, L., A large-deformation strain-gradient theory for isotropic viscoplastic materials, Int. J. Plast., 25, 420-453 (2009) · Zbl 1277.74009
[49] Levitas, V.; Ozsoy, I., Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation, Int. J. Plast., 25, 239-280 (2009) · Zbl 1277.74059
[50] Levitas, V.; Ozsoy, I., Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples, Int. J. Plast., 25, 546-583 (2009) · Zbl 1277.74058
[51] Levitas, V.; Preston, D., Three-dimensional landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow\) martensite, Phys. Rev. B, 66, 134206 (2002)
[52] Li, Z., Computations of needle-like microstructures, Appl. Numer. Math., 39, 1-15 (2001) · Zbl 1002.74096
[53] Li, Z., Mesh transformation and regularization in numerical simulation of austenitic- martensitic phase transition, Comput. Mater. Sci., 21, 418-428 (2001)
[54] Liang, C.; Rogers, C., A multi-dimensional constitutive model for shape memory alloys, J. Eng. Math., 26, 429-443 (1992) · Zbl 0765.73004
[55] Miehe, C., A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 898-923 (2011) · Zbl 1270.74022
[56] Miehe, C.; Welschinger, F.; Aldakheel, F., Variational gradient plasticity at finite strains. Part IILocal-global updates and mixed finite elements for additive plasticity in the logarithmic strain space, Comput. Methods Appl. Mech. Eng., 268, 704-734 (2014) · Zbl 1295.74014
[57] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracturevariational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273-1311 (2010) · Zbl 1202.74014
[58] Mielke, A.; Roubíček, T., A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1, 571-597 (2003) · Zbl 1183.74207
[59] Montecinos, S.; Cuniberti, A.; Sepúlveda, A., Grain size and pseudoelastic behaviour of a Cu-Al-Be alloy, Mater. Charact., 59, 117-123 (2008)
[60] Mutter, D.; Nielaba, P., Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles, Eur. Phys. J. B, 84, 109-113 (2011)
[61] Ni, C.; Ding, H.; Jin, X., Grain size dependence of the martensitic transformation in a nano-grained FeNi polycrystal a molecular dynamics study, J. Alloy Compd., 546, 1-6 (2013)
[62] Nielsen, K. L.; Niordson, C. F., A numerical basis for strain-gradient plasticity theoryrate-independent and rate-dependent formulations, J. Mech. Phys. Solids, 63, 113-127 (2014) · Zbl 1303.74010
[63] Ogden, R., Non-Linear Elastic Deformations (1997), Dover: Dover Mineola
[64] Ortiz, M.; Radovitzky, R. A.; Repetto, E. A., The computation of the exponential and logarithmic mappings and their first and second linearizations, Int. J. Numer. Methods Eng., 52, 1431-1441 (2001) · Zbl 0995.65053
[65] Ortiz, M.; Stainier, L., The variational formulation of viscoplastic updates, Comput. Methods Appl. Mech. Eng., 171, 419-444 (1999) · Zbl 0938.74016
[66] (Otsuka, K.; Wayman, C. M., Shape Memory Materials (1998), Cambridge University Press: Cambridge University Press Cambridge)
[67] Otter, J. R.; Cassell, A. C.; Hobbs, R. E., Dynamic relaxation, ICE Proc., 35, 633-656 (1966)
[68] Papadrakakis, M., A method for the automatic evaluation of the dynamic relaxation parameters, Comput. Methods Appl. Mech. Eng., 25, 35-48 (1981) · Zbl 0444.73067
[69] Patoor, E.; Lagoudas, D.; Entchev, P.; Brison, L.; Gao, X., Shape memory alloys, Part IGeneral properties and modeling of single crystals, Mech. Mater., 38, 391-429 (2006)
[70] Petryk, H.; Stupkiewicz, S., Interfacial energy and dissipation in martensitic phase transformations. Part ITheory, J. Mech. Phys. Solids, 58, 390-408 (2010) · Zbl 1193.74046
[71] Petryk, H.; Stupkiewicz, S.; Maciejewski, G., Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity, J. Mech. Phys. Solids, 58, 373-389 (2010) · Zbl 1193.74047
[72] Phillips, F.; Fang, D.; Zheng, H.; Lagoudas, D., Phase transformation in free-standing SMA nanowires, Acta Mater., 59, 1871-1880 (2011)
[73] Porter, D.; Easterling, K.; Sherif, M., Phase Transformations in Metals and Alloys (2009), CRC Press: CRC Press Boca Raton
[74] Qiao, L.; Rimoli, J.; Chen, Y.; Schuh, C. A.; Radovitzky, R., Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys, Phys. Rev. Lett., 106, 085504 (2011)
[75] Qidwai, M. A.; Lagoudas, D. C., Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, Int. J. Numer. Methods Eng., 47, 1123-1168 (2000), 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N · Zbl 0960.74067
[76] Radovitzky, R.; Ortiz, M., Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Comput. Methods Appl. Mech. Eng., 172, 203-240 (1999) · Zbl 0957.74058
[77] Raniecki, B.; Lexcellent, C., Rl-models of pseudoelasticity and their specification for some shape memory solids, Eur. J. Mech. A Solids, 13, 21-50 (1994) · Zbl 0795.73010
[78] Raniecki, B.; Lexcellent, C., Thermodynamics of isotropic pseudoelasticity in shape memory alloys, Eur. J. Mech.-A/Solids, 17, 185-205 (1998) · Zbl 0919.73006
[79] Raniecki, B.; Lexcellent, C.; Tanaka, K., Thermodynamic models of pseudoelastic behaviour of shape memory alloys, Arch. Mech. (Arch. Mech. Stosow.), 44, 261-284 (1992) · Zbl 0825.73044
[80] Reese, S.; Christ, D., Finite deformation pseudo-elasticity of shape memory alloys—constitutive modelling and finite element implementation, Int. J. Plast., 24, 455-482 (2008) · Zbl 1145.74005
[81] San Juan, J.; Nó, M. L.; Schuh, C. A., Superelasticity and shape memory in micro- and nanometer-scale pillars, Adv. Mater., 20, 272-278 (2008)
[82] San Juan, J.; Nó, M. L.; Schuh, C. A., Nanoscale shape-memory alloys for ultrahigh mechanical damping, Nat. Nanotechnol., 4, 415-419 (2009)
[83] Schenk, O.; Grtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 475-487 (2004)
[84] Sedlak, P.; Frost, M.; Benesova, B.; Zineb, T. B.; Sittner, P., Thermomechanical model for NiTi-based shape memory alloys including r-phase and material anisotropy under multi-axial loadings, Int. J. Plast., 39, 132-151 (2012)
[85] Sengupta, A.; Papadopoulos, P.; Taylor, R., Multiscale finite element modeling of superelasticity in nitinol polycrystals, Comput. Mech., 43, 573-584 (2009)
[86] Siredey, N.; Patoor, E.; Berveiller, M.; Eberhardt, A., Constitutive equations for polycrystalline thermoelastic shape memory alloys. Part I. Intragranular interactions and behavior of the grain, Int. J. Solids Struct., 36, 4289-4315 (1999) · Zbl 0946.74041
[87] Somerday, M.; Comstock, R.; Wert, J., Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy, Metall. Mater. Trans. A, 28, 2335-2341 (1997)
[88] Soul, H.; Isalgue, A.; Yawny, A.; Torra, V.; Lovey, F., Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity, Smart Mater. Struct., 19, 085006 (2010)
[89] Stelmashenko, N.; Walls, M.; Brown, L.; Milman, Y., Microindentations on W and Mo oriented single crystals: an STM study, Acta Metall. Mater., 41, 2855-2865 (1993)
[90] Stolken, J.; Evans, A., A microbend test method for measuring the plasticity length scale, Acta Mater., 46, 5109-5115 (1998)
[91] Stupkiewicz, S.; Petryk, H., Grain-size effect in micromechanical modelling of hysteresis in shape memory alloys, J. Appl. Math. Mech.—ZAMM, 90, 783-795 (2010) · Zbl 1380.74015
[92] Stupkiewicz, S.; Petryk, H., A robust model of pseudoelasticity in shape memory alloys, Int. J. Numer. Methods Eng., 93, 747-769 (2013) · Zbl 1352.74227
[93] Sun, Q. P.; He, Y. J., A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals, Int. J. Solids Struct., 45, 3868-3896 (2008) · Zbl 1169.74519
[94] Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K., Grain size dependence of pseudoelasticity in polycrystalline CuAlMn-based shape memory sheets, Acta Mater., 61, 3842-3850 (2013)
[95] Sutou, Y.; Omori, T.; Yamauchi, K.; Ono, N.; Kainuma, R.; Ishida, K., Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire, Acta Mater., 53, 4121-4133 (2005)
[96] Tanaka, K.; Kobayashi, S.; Sato, Y., Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Int. J. Plast., 2, 59-72 (1986)
[97] Thamburaja, P., A finite-deformation-based phenomenological theory for shape-memory alloys, Int. J. Plast., 26, 1195-1219 (2010) · Zbl 1426.74243
[98] Thamburaja, P.; Anand, L., Polycrystalline shape-memory materialseffect of crystallographic texture, J. Mech. Phys. Solids, 49, 709-737 (2001) · Zbl 1011.74049
[99] Thamburaja, P.; Nikabdullah, N., A macroscopic constitutive model for shape-memory alloystheory and finite-element simulations, Comput. Methods Appl. Mech. Eng., 198, 1074-1086 (2009) · Zbl 1229.74111
[100] Ueland, S. M.; Chen, Y.; Schuh, C. A., Oligocrystalline shape memory alloys, Adv. Funct. Mater., 22, 2094-2099 (2012)
[101] Ueland, S. M.; Schuh, C. A., Superelasticity and fatigue in oligocrystalline shape memory alloy microwires, Acta Mater., 60, 282-292 (2012)
[103] Vedantam, S.; Abeyaratne, R., A Helmholtz free-energy function for a CuAlNi shape memory alloy, Int. J. Non-Linear Mech., 40, 177-193 (2005) · Zbl 1349.74076
[104] Waitz, T.; Antretter, T.; Fischer, F.; Karnthaler, H., Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys, Mater. Sci. Technol., 24, 937-940 (2008)
[105] Waitz, T.; Antretter, T.; Fischer, F. D.; Simha, N. K.; Karnthaler, H. P., Size effects on the martensitic phase transformation of NiTi nanograins, J. Mech. Phys. Solids, 55, 419-444 (2007) · Zbl 1162.74309
[106] Wang, Y.; Khachaturyan, A. G., Three-dimensional field model and computer modeling of martensitic transformations, Acta Mater., 45, 759-773 (1997)
[107] Xiang, Y.; Vlassak, J., Bauschinger and size effects in thin-film plasticity, Acta Mater., 54, 5449-5460 (2006)
[108] (Yamauchi, K.; Ohkata, I.; Tsuchiya, K.; Miyazaki, S., Shape Memory and Superelastic AlloysTechnologies and Applications (2011), Woodhead Publishing: Woodhead Publishing Cambridge)
[109] Ye, J.; Mishra, R. K.; Pelton, A. R.; Minor, A. M., Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Mater., 58, 490-498 (2010)
[110] Zhang, X.; Brinson, L.; Sun, Q., The variant selection criteria in single-crystal CuAlNi shape memory alloys, Smart Mater. Struct., 9, 571-581 (2000)
[111] Zhao, Z.; Kuchnicki, S.; Radovitzky, R.; Cuitio, A., Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM, Acta Mater., 55, 2361-2373 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.