×

A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. (English) Zbl 1054.74697

Summary: We present a practical algorithm for partially relaxing multiwell energy densities such as pertain to materials undergoing martensitic phase transitions. The algorithm is based on sequential lamination, but the evolution of the microstructure during a deformation process is required to satisfy a continuity constraint, in the sense that the new microstructure should be reachable from the preceding one by a combination of branching and pruning operations. All microstructures generated by the algorithm are in static and configurational equilibrium. Owing to the continuity constraint imposed upon the microstructural evolution, the predicted material behavior may be path-dependent and exhibit hysteresis. In cases in which there is a strict separation of micro- and macrostructural lengthscales, the proposed relaxation algorithm may effectively be integrated into macroscopic finite-element calculations at the sub-grid level. We demonstrate this aspect of the algorithm by means of a numerical example concerned with the indentation of a Cu–Al–Ni shape memory alloy by a spherical indenter.

MSC:

74N05 Crystals in solids
74N15 Analysis of microstructure in solids
74S05 Finite element methods applied to problems in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics

References:

[1] Abeyaratne, R.; Chu, C.; James, R. D., Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy, Philos. Mag. A, 73, 2, 457-497 (1996)
[2] Abeyaratne, R.; Knowles, J. K., On the kinetics of an austenite→martensite phase transformation induced by impact in a Cu-Al-Ni shape-memory alloy, Acta Mater., 45, 4, 1671-1683 (1997)
[3] Aranda, E.; Pedregal, P., Numerical approximation of non-homogeneous, non-convex vector variational problems, Numer. Math., 89, 3, 425-444 (2001) · Zbl 1008.65042
[4] Aranda, E.; Pedregal, P., On the computation of the rank-one convex hull of a function, SIAM J. Sci. Comput., 22, 5, 1772-1790 (2001) · Zbl 0989.49015
[5] S. Aubry, K. Bhattachatya, M. Ortiz, Effective behavior of single crystals, in preparation; S. Aubry, K. Bhattachatya, M. Ortiz, Effective behavior of single crystals, in preparation
[6] Ball, J.; James, R. D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. London, 338, 389-450 (1992) · Zbl 0758.73009
[7] Ball, J.; James, R. D., Fine phase mixtures as minimizers of energy, Z. Angew. Math. Mech., 76, 389-392 (1996) · Zbl 0918.49019
[8] Ball, J. M.; Chu, C.; James, R. D., Hysteresis during stress-induced variant rearrangement, J. Phys. IV, 5, 245-251 (1995), (Colloque C8, supplément au journal de physique III)
[9] S. Bartels, C. Carstensen, P. Plecháč, Finite element computation of macroscopic quantities in nonconvex minimisation problems and applications in materials science, in: A.M. Sandig, W. Schiehlen, W.L. Wendland (Eds.), Multifield Problems, State of the Art, Springer-Verlag, Berlin, 2000, pp. 69-79; S. Bartels, C. Carstensen, P. Plecháč, Finite element computation of macroscopic quantities in nonconvex minimisation problems and applications in materials science, in: A.M. Sandig, W. Schiehlen, W.L. Wendland (Eds.), Multifield Problems, State of the Art, Springer-Verlag, Berlin, 2000, pp. 69-79 · Zbl 1015.74056
[10] Bhattacharya, K., Wedge-like microstructure in martensites, Acta Metall., 39, 2431-2444 (1991)
[11] Bhattacharya, K., Self-accommodation in martensites, Arch. Rat. Mech. Anal., 120, 201-244 (1992) · Zbl 0771.73007
[12] Bhattacharya, K., Comparison of the geometrically nonlinear and linear theories of martensitic transformations, Continuum Mech. Thermodyn., 5, 205-242 (1993) · Zbl 0780.73005
[13] Bhattacharya, K.; Li, B.; Luskin, M., Simply laminated microstructure, Arch. Rat. Mech. Anal., 149, 123-154 (1999) · Zbl 0942.74056
[14] Boullay, P.; Schryvers, D.; Kohn, R. V., Bending martensite needles in Ni65Al35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy-art. no. 144105, Phys. Rev. B, 6414, 14, 4105 (2001)
[15] Carstensen, C.; Plecháč, P., Numerical solution of the scalar double-well problem allowing microstructure, Math. Comput., 66, 219, 997-1026 (1997) · Zbl 0870.65055
[16] Chipot, M.; Kinderlehrer, D., Equilibrium configurations of crystals, Arch. Rat. Mech. Anal., 103, 237-277 (1988) · Zbl 0673.73012
[17] C. Chu, Hysteresis and microstructures: a study of biaxial loading on compound twins of copper-aluminum-nickel single crystals, Ph.D. thesis, University of Minnesota, 1993; C. Chu, Hysteresis and microstructures: a study of biaxial loading on compound twins of copper-aluminum-nickel single crystals, Ph.D. thesis, University of Minnesota, 1993
[18] Chu, C.; James, R. D., Analysis of microstructures in Cu-14.0
[19] Dacorogna, R., Direct Methods in the Calculus of Variations (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0703.49001
[20] DeSimone, A., Energy minimizers for large ferromagnetic bodies, Arch. Rat. Mech. Anal., 125, 99-143 (1993) · Zbl 0811.49030
[21] Dolzmann, G., Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal., 36, 5, 1621-1635 (1999) · Zbl 0941.65062
[22] Eriksen, J., Some phase transitions in crystals, Arch. Rat. Mech. Anal., 73, 99-124 (1980) · Zbl 0429.73007
[23] Govindjee, S.; Miehe, C., A multi-variant martensitic phase transformation model: formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg., 191, 3-5, 215-238 (2001) · Zbl 1007.74061
[24] James, R. D.; Kinderlehrer, D., Theory of diffusionless phase transitions, (Rascle, M.; Serre, D.; Slemrod, M., PDEs and Continuum Models of Phase Transitions. PDEs and Continuum Models of Phase Transitions, Lecture Notes in Physics, vol. 344 (1989)) · Zbl 0991.74504
[25] James, R. D.; Kohn, R. W.; Shield, T. W., Modeling of branched needle microstructures at the edge of a martensite laminate, J. Phys. IV, 5, C8, 253-259 (1995)
[26] Kohn, R. V., Relaxation of a double-well energy, Continuum Mech. Thermodyn., 3, 193-236 (1991) · Zbl 0825.73029
[27] Kohn, R. V.; Strang, G., Explicit relaxation of a variational problem in optimal-design, Bull. Am. Math. Soc., 9, 2, 211-214 (1983) · Zbl 0527.49002
[28] Kohn, R. V.; Strang, G., Optimal design and relaxation of variational problems i-ii-iii, Comm. Pure Appl. Math., 39, 113-137 (1986), 139-182, 353-377 · Zbl 0609.49008
[29] Kruzik, M., Numerical approach to double well problems, SIAM J. Numer. Anal., 35, 5, 1833-1849 (1998) · Zbl 0929.49016
[30] Li, B.; Luskin, M., Approximation of a martensitic laminate with varying volume fractions, Math. Modelling Numer. Anal. M2AN, 33, 1, 67-87 (1999) · Zbl 0928.74012
[31] Luskin, M., On the computation of crystalline microstructure, Acta Numer., 5, 191-257 (1996) · Zbl 0867.65033
[32] S. Müller, Variational models for microstructure and phase transitions, Technical Report, Max-Planck Intitute, 1998; S. Müller, Variational models for microstructure and phase transitions, Technical Report, Max-Planck Intitute, 1998
[33] P. Neff, Suitable energy functionals to limit jacobian, Personal communication, 2001; P. Neff, Suitable energy functionals to limit jacobian, Personal communication, 2001
[34] Ortiz, M.; Repetto, E. A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47, 2, 397-462 (1999) · Zbl 0964.74012
[35] M. Ortiz, E.A. Repetto, L. Stainier, A theory of subgrain dislocation structures, preprint submitted to Elsevier preprint; M. Ortiz, E.A. Repetto, L. Stainier, A theory of subgrain dislocation structures, preprint submitted to Elsevier preprint · Zbl 1001.74007
[36] Ortiz, M.; Stainier, L., The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Engrg., 171, 419-444 (1999) · Zbl 0938.74016
[37] Pacheco, P., Parallel Programming with MPI (1996), Morgan Kaufmann
[38] A. Pandolfi, Inpenetrability constraints, unpublished, 2001; A. Pandolfi, Inpenetrability constraints, unpublished, 2001
[39] Pedregal, P., Laminates and microstructure, European J. Appl. Math., 4, 121-149 (1993) · Zbl 0779.73050
[40] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.ps; J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.ps
[41] Spellucci, P., A new technique for inconsistent qp problems in the sqp method, Math. Methods Oper. Res., 47, 3, 355-400 (1998) · Zbl 0964.90062
[42] Tadmor, E. B.; Smith, G. S.; Bernstein, N.; Kaxiras, E., Mixed finite element and atomistic formulation for complex crystals, Phys. Rev. B, 59, 1, 235-245 (1999)
[43] Tadmor, E. B.; Waghmare, U. V.; Smith, G. S.; Kaxiras, E., Polarization switching in \(PbTiO_3\): an ab initio finite element simulation, Acta Materialia, 50, 11, 2989-3002 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.