×

Plastic deformation of freestanding thin films: experiments and modeling. (English) Zbl 1120.74617

Summary: Experimental measurements and computational results for the evolution of plastic deformation in freestanding thin films are compared. In the experiments, the stress-strain response of two sets of Cu films is determined in the plane-strain bulge test. One set of samples consists of electroplated Cu films, while the other set is sputter-deposited. Unpassivated films, films passivated on one side and films passivated on both sides are considered. The calculations are carried out within a two-dimensional plane strain framework with the dislocations modeled as line singularities in an isotropic elastic solid. The film is modeled by a unit cell consisting of eight grains, each of which has three slip systems. The film is initially free of dislocations which then nucleate from a specified distribution of Frank-Read sources. The grain boundaries and any film-passivation layer interfaces are taken to be impenetrable to dislocations. Both the experiments and the computations show: (i) a flow strength for the passivated films that is greater than for the unpassivated films and (ii) hysteresis and a Bauschinger effect that increases with increasing pre-strain for passivated films, while for unpassivated films hysteresis and a Bauschinger effect are small or absent. Furthermore, the experimental measurements and computational results for the 0.2% offset yield strength stress, and the evolution of hysteresis and of the Bauschinger effect are in good quantitative agreement.

MSC:

74K35 Thin films
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Acharya, A.; Bassani, J. L., Lattice incompatibility and a gradient theory of crystal plasticity, J. Mech. Phys. Solids, 48, 1565-1595 (2000) · Zbl 0963.74010
[2] Benzerga, A. A.; Bréchet, Y.; Needleman, A.; Van der Giessen, E., Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics, Modelling Simul. Mater. Sci. Eng., 12, 159-196 (2004)
[3] Cleveringa, H. H.M.; Van der Giessen, E.; Needleman, A., A discrete dislocation analysis of bending, Int. J. Plasticity, 15, 837-868 (1999) · Zbl 0976.74048
[4] Dehm, G.; Balk, T. J.; Edongué, H.; Arzt, E., Small-scale plasticity in thin Cu and Al films, Microelectron. Eng., 70, 412-424 (2003)
[5] Deshpande, V. S.; Needleman, A.; Van der Giessen, E., Plasticity size effects in tension and compression of single crystals, J. Mech. Phys. Solids, 53, 2661-2691 (2005) · Zbl 1120.74390
[6] Dimiduk, D. M.; Uchic, M. D.; Parathasarathy, T. A., Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater., 53, 15, 4065-4077 (2005)
[7] Espinosa, H. D.; Prorok, B. C.; Fischer, M., A methodology for determining mechanical properties of freestanding thin films and MEMS materials, J. Mech. Phys. Solids, 51, 47-67 (2003)
[8] Espinosa, H. D.; Prorok, B. C.; Peng, B., Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension, J. Mech. Phys. Solids, 52, 667-689 (2004)
[9] Fleck, N. A.; Hutchinson, J. W., A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245-2271 (2001) · Zbl 1033.74006
[10] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42, 475-487 (1994)
[11] Florando, J. N.; Nix, W. D., A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates, J. Mech. Phys. Solids, 53, 619-638 (2005) · Zbl 1122.74452
[12] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W., Mechanism-based strain gradient plasticity, J. Mech. Phys. Solids, 47, 1239-1263 (1999) · Zbl 0982.74013
[13] Ghoniem, N. M.; Han, X., Dislocation motion in anisotropic multilayer materials, Philos. Mag., 85, 2809-2830 (2005)
[14] Greer, J.R., Oliver, W.C., Nix, W.D., 2005. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821-1830, erratum Acta Mater. 54, 1705.; Greer, J.R., Oliver, W.C., Nix, W.D., 2005. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821-1830, erratum Acta Mater. 54, 1705.
[15] Groh, S.; Devincre, B.; Kubin, L. P.; Roos, A.; Feyel, F.; Chaboche, J.-L., Dislocations and elastic anisotropy in heteroepitaxial metallic thin films, Philos. Mag. Lett., 83, 303-313 (2003)
[16] Gurtin, M. E., A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 5-32 (2002) · Zbl 1043.74007
[17] Haque, M. A.; Saif, M. T.A., Strain gradient effect in nanoscale thin films, Acta Mater., 51, 3053-3061 (2003)
[18] Hartmaier, A.; Buehler, M. J.; Gao, H., Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates, Mater. Sci. Eng. A, 400, 260-263 (2005)
[19] Hommel, M.; Kraft, O., Deformation behavior of thin copper films on deformable substrates, Acta Mater., 49, 3935-3947 (2001)
[20] Hutchinson, J.W., 2001. Strain gradient plasticity theory revisited. Materials Science for the 21st Century, vol. A. Society of Materials Science, Japan, pp. 307-315.; Hutchinson, J.W., 2001. Strain gradient plasticity theory revisited. Materials Science for the 21st Century, vol. A. Society of Materials Science, Japan, pp. 307-315.
[21] Kubin, L. P.; Canova, G.; Condat, M.; Devincre, B.; Pontikis, V.; Bréchet, Y., Dislocation microstructures and plastic flow: a 3D simulation, Solid State Phenom., 23, 455-472 (1992)
[22] Lou, J.; Shrotriya, P.; Buchheit, P.; Yang, D.; Soboyejo, W. O., An investigation of the effects of thickness on mechanical properties of LIGA nickel MEMS structures, J. Mater. Sci., 38, 4137-4143 (2003)
[23] Ma, Q.; Clark, D. R., Size dependent hardness of silver single crystals, J. Mater. Res., 10, 853-863 (1995)
[24] Nicola, L.; Van der Giessen, E.; Needleman, A., Discrete dislocation analysis of size effects in thin films, J. Appl. Phys., 93, 5920-5928 (2003)
[25] Nicola, L.; Van der Giessen, E.; Needleman, A., Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity, Thin Solid Films, 479, 329-338 (2005)
[26] Nicola, L.; Van der Giessen, E.; Gurtin, M. E., Effect of defect energy on strain-gradient predictions of confined single-crystal plasticity, J. Mech. Phys. Solids, 53, 1280-1294 (2005) · Zbl 1120.74358
[27] Nicola, L.; Van der Giessen, E.; Needleman, A., Two hardening mechanisms in single crystal thin films studied by discrete dislocation plasticity, Philos. Mag. A, 85, 1507-1518 (2005)
[28] Pant, P.; Schwarz, K. W.; Baker, S. P., Dislocation interactions in thin FCC metal films, Acta Mater., 51, 3243-3258 (2003)
[29] Phillips, M. A.; Spolenak, R.; Tamura, N.; Brown, W. L.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Batterman, B. W.; Arzt, E.; Patel, J. R., X-ray microdiffraction: local stress distributions in polycrystalline and epitaxial thin films, Microelectron. Eng., 75, 117-126 (2004)
[30] Shen, Y.-L.; Suresh, S.; He, M. Y.; Bagchi, A.; Kienzle, O.; Rühle, M.; Evans, A. G., Stress evolution in passivated thin films of Cu on silica substrates, J. Mater. Res., 13, 1928-1937 (1998)
[31] Shu, J. Y.; Fleck, N. A.; Van der Giessen, E.; Needleman, A., Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity, J. Mech. Phys. Solids, 49, 1361-1395 (2001) · Zbl 1015.74004
[32] Stölken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109-5115.; Stölken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109-5115.
[33] Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D., Sample dimensions influence strength and crystal plasticity, Science, 305, 5686, 986-989 (2004)
[34] Van der Giessen, E.; Needleman, A., Discrete dislocation plasticity: a simple planar model, Modelling Simul. Mater. Sci. Eng., 3, 689-735 (1995)
[35] Vlassak, J. J.; Nix, W. D., A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films, J. Mater. Res., 7, 3242-3249 (1992)
[36] Von Blanckenhagen, B.; Arzt, E.; Gumbsch, P., Discrete dislocation simulation of plastic deformation in metal thin films, Acta Mater., 52, 773-784 (2004)
[37] Xiang, Y.; Vlassak, J. J., Bauschinger effect in thin metal films, Scr. Mater., 53, 177-182 (2005)
[38] Xiang, Y., Vlassak, J.J., 2005b. Length-scale and Bauschinger effects in freestanding thin films, submitted for publication.; Xiang, Y., Vlassak, J.J., 2005b. Length-scale and Bauschinger effects in freestanding thin films, submitted for publication.
[39] Xiang, Y., Tsui, T.Y., Vlassak, J.J., 2006. The mechanical properties of freestanding electroplated Cu thin films. J. Mater. Res. 21 (6), in press.; Xiang, Y., Tsui, T.Y., Vlassak, J.J., 2006. The mechanical properties of freestanding electroplated Cu thin films. J. Mater. Res. 21 (6), in press.
[40] Xiang, Y.; Chen, X.; Vlassak, J. J., The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique, Mater. Res. Soc. Symp. Proc., 695, 189-194 (2002)
[41] Xiang, Y., Vlassak, J.J., Perez-Prado, M.T., Tsui, T.Y., McKerrow, A.J., 2004. The effects of passivation layer and film thickness on the mechanical behavior of freestanding electroplated Cu thin films with constant microstructure. Mater. Res. Soc. Symp. Proc. 795, 417-422.; Xiang, Y., Vlassak, J.J., Perez-Prado, M.T., Tsui, T.Y., McKerrow, A.J., 2004. The effects of passivation layer and film thickness on the mechanical behavior of freestanding electroplated Cu thin films with constant microstructure. Mater. Res. Soc. Symp. Proc. 795, 417-422.
[42] Xiang, Y.; Chen, X.; Vlassak, J. J., The plane-strain bulge test for thin films, J. Mater. Res., 20, 2360-2370 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.