×

The Weil-Petersson geodesic flow is ergodic. (English) Zbl 1254.37005

The introduction of this article is extremely well written, and it gives a clear overview of the methods used, the technical difficulties that had to be overcome and the historical development of the subject.
The authors prove the ergodicity of the geodesic flow on \(\mathfrak{M}(S)\), where \(S\) is a compact surface of genus \(g\) with \(n \geq 0\) punctures and \(\mathfrak{M}(S)\) denotes the moduli space of conformal structures (up to equivalence) on \(S\). The space \(\mathfrak{M}(S)\) has the structure of a complex orbifold of dimension \(3g - 3 + n\), and the universal cover is the Teichmüller space Teich(\(S\)). On Teich(\(S\)) there is a WP metric (Weil-Petersson) and a symplectic form that descend to \(\mathfrak{M}(S)\). \(\mathfrak{M}(S)\) has finite volume with respect to the volume element defined by the symplectic form. The sectional curvatures of the WP metric are negative, but the WP metric is incomplete. This means that the methods used for studying complete, negatively curved manifolds are not immediately available here, and must be recovered with special methods and considerable effort. The authors actually prove that the geodesic flow is Bernoulli, which implies mixing of all orders. Earlier work of Brock, Masur and Minsky had proved the existence of dense orbits of the geodesic flow and the denseness of the vectors with periodic orbits. These authors also proved that the topological entropy is infinite, in contrast to the finiteness of the measure theoretic entropy proved in this article.
Until roughly 1940 the results about the geodesic flow on a compact, negatively curved manifold \(M\) were confined to manifolds of dimension two and constant negative Gaussian curvature. Ergodicity in this setting was known. The methods used were algebraic in origin. Around 1940 E. Hopf discovered an ingenious way to study compact surfaces of variable negative curvature by using the interplay of the stable and unstable foliations of the geodesic flow. In fact, these methods proved ergodicity for the geodesic flow of manifolds of arbitrary dimension and constant negative sectional curvature, but they required the stable and unstable foliations to be \(C^{1}\). The \(C^{1}\) condition is not satisfied for variable negative sectional curvature in dimensions \(\geq 3\). Hopf’s simple and elegant idea for proving ergodicity has come to be called the Hopf Argument, and it has served as a blueprint for proving ergodicity in related settings. However, typically one must overcome significant technical difficulties not present in Hopf’s setting before one can apply the Hopf Argument. In particular, one must prove the almost everywhere existence of stable and unstable manifolds and the absolute continuity of the corresponding foliations. For the geodesic flow of a compact manifold with variable negative sectional curvature this followed from the theory of hyperbolic dynamical systems developed in the 60s by Anosov and Sinai. However, the absolute continuity of these foliations is typically unknown (or even false) for nonuniformly hyperbolic flows, including the geodesic flow of a compact surface of nonpositive Gaussian curvature.
In the present setting, the geodesic flow on \(\mathfrak{M}(S)\), the authors prove the local existence and smoothness of stable and unstable manifolds with the help of existence criteria established by Katok and Strelcyn. They find bounds on the norm of the first and second derivatives of the geodesic flow in a suitable domain to show that these criteria are satisfied. The importance of such bounds had been noted earlier by Pollicott and Weiss. Establishing these bounds on the norm uses earlier results of Wolpert and McMullen. Finally, the authors use the negative curvature and geodesic convexity of the WP metric to establish the almost everywhere existence of the stable and unstable manifolds. The Hopf Argument can now be applied with small modifications.

MSC:

37A25 Ergodicity, mixing, rates of mixing
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
30F60 Teichmüller theory for Riemann surfaces

References:

[1] D. V. Anosov, ”Geodesic flows on closed Riemannian manifolds of negative curvature,” Proc. Steklov Math. Inst., vol. 90, pp. 1-235, 1967. · Zbl 0176.19101
[2] D. V. Anosov and J. G. Sinaui, ”Certain smooth ergodic systems,” Uspehi Mat. Nauk, vol. 22, iss. 5 (137), pp. 107-172, 1967. · Zbl 0177.42002
[3] W. Ballmann, M. Brin, and K. Burns, ”On the differentiability of horocycles and horocycle foliations,” J. Differential Geom., vol. 26, iss. 2, pp. 337-347, 1987. · Zbl 0609.53012
[4] W. Ballmann, M. Brin, and K. Burns, ”On surfaces with no conjugate points,” J. Differential Geom., vol. 25, iss. 2, pp. 249-273, 1987. · Zbl 0592.53041
[5] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Boston, MA: Birkhäuser, 1985, vol. 61. · Zbl 0591.53001
[6] M. Bridgeman, ”Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space,” Geom. Topol., vol. 14, iss. 2, pp. 799-831, 2010. · Zbl 1200.30037 · doi:10.2140/gt.2010.14.799
[7] J. Brock, H. Masur, and Y. Minsky, ”Asymptotics of Weil-Petersson geodesic. I. Ending laminations, recurrence, and flows,” Geom. Funct. Anal., vol. 19, iss. 5, pp. 1229-1257, 2010. · Zbl 1216.32007 · doi:10.1007/s00039-009-0034-2
[8] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, New York: Springer-Verlag, 1999, vol. 319. · Zbl 0988.53001
[9] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, Providence, RI: AMS Chelsea Publ., 2008. · Zbl 1142.53003
[10] G. Daskalopoulos and R. Wentworth, ”Classification of Weil-Petersson isometries,” Amer. J. Math., vol. 125, iss. 4, pp. 941-975, 2003. · Zbl 1043.32007 · doi:10.1353/ajm.2003.0023
[11] D. Dolgopyat, H. Hu, and Y. Pesin, ”An example of a smooth hyperbolic measure with countably many ergodic components,” in Smooth Ergodic Theory and its Applications, Providence, RI: Amer. Math. Soc., 2001, vol. 69. · Zbl 0996.37001
[12] P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago, IL: University of Chicago Press, 1996. · Zbl 0883.53003
[13] P. B. Eberlein, ”Geodesic flows in manifolds of nonpositive curvature,” in Smooth Ergodic Theory and its Applications, Providence, RI: Amer. Math. Soc., 2001, vol. 69, pp. 525-571. · Zbl 1030.53084
[14] B. Farb and D. Margalit, A Primer on mapping class groups. · Zbl 1245.57002
[15] U. Hamenstädt, ”Dynamical properties of the Weil-Petersson metric,” in In the Tradition of Ahlfors-Bers. V, Providence, RI: Amer. Math. Soc., 2010, vol. 510, pp. 109-127. · Zbl 1198.30048
[16] B. Hasselblatt, ”Regularity of the Anosov splitting and of horospheric foliations,” Ergodic Theory Dynam. Systems, vol. 14, iss. 4, pp. 645-666, 1994. · Zbl 0821.58032 · doi:10.1017/S0143385700008105
[17] E. Hopf, ”Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, vol. 91, pp. 261-304, 1939. · Zbl 0024.08003
[18] J. H. Hubbard, ”The monodromy of projective structures,” in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Princeton, N.J.: Princeton Univ. Press, 1981, vol. 97, pp. 257-275. · Zbl 0475.32008
[19] A. Katok, ”Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems,” Ergodic Theory Dynam. Systems, vol. 14, iss. 4, pp. 757-785, 1994. · Zbl 0816.58029 · doi:10.1017/S0143385700008142
[20] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univ. Press, 1995, vol. 54. · Zbl 0878.58020
[21] A. Katok, J. Strelcyn, F. Ledrappier, and F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, New York: Springer-Verlag, 1986, vol. 1222. · Zbl 0658.58001 · doi:10.1007/BFb0099031
[22] O. Kowalski and M. Sekizawa, ”On tangent sphere bundles with small or large constant radius,” Ann. Global Anal. Geom., vol. 18, iss. 3-4, pp. 207-219, 2000. · Zbl 1011.53025 · doi:10.1023/A:1006707521207
[23] A. Manning, ”More topological entropy for geodesic flows,” in Dynamical Systems and Turbulence, Warwick 1980, New York: Springer-Verlag, 1981, vol. 898, pp. 243-249. · Zbl 0489.58025 · doi:10.1007/BFb0091917
[24] M. Mirzakhani, ”Growth of the number of simple closed geodesics on hyperbolic surfaces,” Ann. of Math., vol. 168, iss. 1, pp. 97-125, 2008. · Zbl 1177.37036 · doi:10.4007/annals.2008.168.97
[25] C. T. McMullen, Riemann surfaces, dynamics and geometry. · Zbl 0765.57012
[26] C. T. McMullen, ”The moduli space of Riemann surfaces is Kähler hyperbolic,” Ann. of Math., vol. 151, iss. 1, pp. 327-357, 2000. · Zbl 0988.32012 · doi:10.2307/121120
[27] C. T. McMullen, ”Thermodynamics, dimension and the Weil-Petersson metric,” Invent. Math., vol. 173, iss. 2, pp. 365-425, 2008. · Zbl 1156.30035 · doi:10.1007/s00222-008-0121-2
[28] H. Masur, ”The extension of the Weil-Petersson metric to the boundary of Teichmuller space,” Duke Math. J., vol. 43, iss. 3, pp. 623-635, 1976. · Zbl 0358.32017 · doi:10.1215/S0012-7094-76-04350-7
[29] H. Masur and M. Wolf, ”The Weil-Petersson isometry group,” Geom. Dedicata, vol. 93, pp. 177-190, 2002. · Zbl 1014.32008 · doi:10.1023/A:1020300413472
[30] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, New York: Wiley-Interscience Publication, John Wiley & Sons, 1988. · Zbl 0667.30040
[31] J. B. Pesin, ”Characteristic Ljapunov exponents, and ergodic properties of smooth dynamical systems with invariant measure,” Dokl. Akad. Nauk SSSR, vol. 226, iss. 4, pp. 774-777, 1976. · Zbl 0345.58010
[32] M. Pollicott, H. Weiss, and S. A. Wolpert, ”Topological dynamics of the Weil-Petersson geodesic flow,” Adv. Math., vol. 223, iss. 4, pp. 1225-1235, 2010. · Zbl 1192.37038 · doi:10.1016/j.aim.2009.09.011
[33] M. Pollicott and H. Weiss, ”Ergodicity of the geodesic flow on non-complete negatively curved surfaces,” Asian J. Math., vol. 13, iss. 3, pp. 405-419, 2009. · Zbl 1185.53091 · doi:10.4310/AJM.2009.v13.n3.a9
[34] C. C. Pugh, ”The \(C^{1+\alpha }\) hypothesis in Pesin theory,” Inst. Hautes Études Sci. Publ. Math., iss. 59, pp. 143-161, 1984. · Zbl 0542.58027 · doi:10.1007/BF02698771
[35] H. E. Rauch, ”A transcendental view of the space of algebraic Riemann surfaces,” Bull. Amer. Math. Soc., vol. 71, pp. 1-39, 1965. · Zbl 0154.33002 · doi:10.1090/S0002-9904-1965-11225-3
[36] S. Sasaki, ”On the differential geometry of tangent bundles of Riemannian manifolds,” Tôhoku Math. J., vol. 10, pp. 338-354, 1958. · Zbl 0086.15003 · doi:10.2748/tmj/1178244668
[37] J. -P. Serre, Rigidité de foncteur d’Jacobi d’echelon \(n\geq 3\), 1961.
[38] . Sinai, ”Dynamical systems with elastic reflections: ergodic properties of scattering billiards,” Russian Math. Surveys, vol. 25, pp. 137-189, 1970. · Zbl 0263.58011 · doi:10.1070/rm1970v025n02ABEH003794
[39] S. A. Wolpert, ”Noncompleteness of the Weil-Petersson metric for Teichmüller space,” Pacific J. Math., vol. 61, iss. 2, pp. 573-577, 1975. · Zbl 0327.32009 · doi:10.2140/pjm.1975.61.573
[40] S. A. Wolpert, ”The Fenchel-Nielsen deformation,” Ann. of Math., vol. 115, iss. 3, pp. 501-528, 1982. · Zbl 0496.30039 · doi:10.2307/2007011
[41] S. A. Wolpert, ”Extension of the Weil-Petersson connection,” Duke Math. J., vol. 146, iss. 2, pp. 281-303, 2009. · Zbl 1167.32010 · doi:10.1215/00127094-2008-066
[42] S. A. Wolpert, ”Geometry of the Weil-Petersson completion of Teichmüller space,” in Surveys in Differential Geometry, Vol. VIII, Int. Press, Somerville, MA, 2003, vol. VIII, pp. 357-393. · Zbl 1049.32020
[43] S. A. Wolpert, Understanding Weil-Petersson curvature. · Zbl 1271.32017
[44] S. A. Wolpert, ”Behavior of geodesic-length functions on Teichmüller space,” J. Differential Geom., vol. 79, iss. 2, pp. 277-334, 2008. · Zbl 1147.30032
[45] S. A. Wolpert, The Weil-Petersson Hessian of length on Teichmüller space. · Zbl 0327.32009
[46] S. A. Wolpert, Families of Riemann Surfaces and Weil-Petersson Geometry, Conference Board of the Mathematical Sciences, Washington, DC, 2010, vol. 113. · Zbl 1198.30049
[47] M. Wolf, The Weil-Petersson Hessian of length on Teichmüller space. · Zbl 1254.30076
[48] M. Wojtkowski, ”Invariant families of cones and Lyapunov exponents,” Ergodic Theory Dynam. Systems, vol. 5, iss. 1, pp. 145-161, 1985. · Zbl 0578.58033 · doi:10.1017/S0143385700002807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.