×

Quasitriangular coideal subalgebras of \(U_q(\mathfrak{g})\) in terms of generalized Satake diagrams. (English) Zbl 1504.17022

Let \(\mathfrak{g}\) be a finite-dimensional semi-simple complex Lie algebra, and let \(\theta\) be an involutive automorphism of \(\mathfrak{g}\). G. Letzter [J. Algebra 220, No. 2, 729–767 (1999; Zbl 0956.17007)] constructs a coideal subalgebra \(B\) of the quantized universal enveloping algebra \(U_q(\mathfrak{g})\) that is a quantum analogue of the fixed-point subalgebra \(\mathfrak{k}=\mathfrak{g}^\theta\). More recently, M. Balagović and S. Kolb [J. Reine Angew. Math. 747, 299–353 (2019; Zbl 1425.81058)] have shown that \(B\) has a universal \(K\)-matrix \(\mathcal{K}\). Note that \(\theta\), \(\mathfrak{k}\), \(B\), and \(\mathcal{K}\) can be described in terms of Satake diagrams. A Satake diagram is a refinement of a Dynkin diagram obtained by coloring some of the nodes and allowing arrows between certain nodes. Satake diagrams can be used to classify the involutive automorphisms (and therefore the real forms) of \(\mathfrak{g}\). They also allow to describe the fixed-point subalgebra \(\mathfrak{k} =\mathfrak{g}^\theta\) in terms of Chevalley-type generators and Serre-type relations.
In the paper under review the constructions of \(\theta\), \(\mathfrak{k}\), \(B\), and \(\mathcal{K}\) are extended to generalized Satake diagrams first considered by A. Heck [J. Math. Soc. Japan 36, 643–658 (1984; Zbl 0533.17003)]. In type \(A\) this generalization does not yield anything new, but in all other types there are generalized Satake diagrams that are not Satake. Such a generalized Satake diagram naturally defines a semi-simple automorphism \(\theta\) of \(\mathfrak{g}\) whose restriction to the standard Cartan subalgebra \(\mathfrak{h}\) of \(\mathfrak{g}\) is an involution. Moreover, it defines a subalgebra \(\mathfrak{k}\) of \(\mathfrak{g}\) such that \(\mathfrak{k}\cap\mathfrak{h}=\mathfrak{h}^\theta\), but \(\mathfrak{k}\) is not always fixed under \(\theta\). The authors show that the subalgebra \(\mathfrak{k}\) can be quantized to a coideal subalgebra \(B\) of \(U_q(\mathfrak{g})\) which is endowed with a universal \(K\)-matrix in the sense of Balagović and Kolb, and they conjecture that conversely any such quasi-triangular coideal subalgebra arises from a generalized Satake diagram in this way.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Sh.Araki, ‘On root systems and an infinitesimal classification of irreducible symmetric spaces’, J. Math. Osaka City Univ.13 (1962) 1-34. · Zbl 0123.03002
[2] M.Balagović and S.Kolb, ‘The bar involution for quantum symmetric pairs’, Represent. Theory19 (2015) 186-210. · Zbl 1376.17018
[3] M.Balagović and S.Kolb, ‘Universal \(K\)‐matrix for quantum symmetric pairs’, J. Reine Angew. Math.747 (2019) 299-353. · Zbl 1425.81058
[4] H.Bao and W.Wang, A new approach to Kazhdan‐Lusztig theory of type B via quantum symmetric pairs (Société mathématique de France, Paris, 2018). · Zbl 1411.17001
[5] H.Bao and W.Wang, ‘Canonical bases arising from quantum symmetric pairs’, Invent. Math.213 (2018) 1099-1177. · Zbl 1416.17001
[6] H.Bao and W.Wang, ‘Canonical bases arising from quantum symmetric pairs of Kac‐Moody type’, Preprint, 2018, arXiv:1811.09848.
[7] P.Baseilhac and S.Belliard, ‘Generalized q‐Onsager algebras and boundary affine Toda field theories’, Lett. Math. Phys.93 (2010) 213-228. · Zbl 1197.81147
[8] L.Dobson and S.Kolb, ‘Factorisation of quasi \(K\)‐matrices for quantum symmetric pairs’, Selecta Math. (N.S.)25 (2019) 63. · Zbl 1442.17017
[9] J.Donin, P.Kulish and A.Mudrov, ‘On a universal solution to the reflection equation’, Lett. Math. Phys.63 (2003) 179-194. · Zbl 1042.17011
[10] V. G.Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians 1986 (American Mathematical Society, Providence, RI, 1987) 798-820.
[11] M.Ehrig and C.Stroppel, ‘Nazarov‐Wenzl algebras, coideal subalgebras and categorified skew Howe duality’, Adv. Math.331 (2018) 58-142. · Zbl 1432.16022
[12] A.Heck, ‘Involutive automorphisms of root systems’, J. Math. Soc. Japan36 (1984) 643-658. · Zbl 0533.17003
[13] N.Jacobson, ‘A note on automorphisms of Lie algebras’, Pacific J. Math.12 (1962) 303-315. · Zbl 0109.26201
[14] J. C.Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics 6 (American Mathematical Society, Providence, RI, 1996). · Zbl 0842.17012
[15] M.Jimbo, ‘A q‐analogue of \(U ( \mathfrak{g} )\) and the Yang‐Baxter equation’, Lett. Math. Phys.11 (1985) 63-69. · Zbl 0587.17004
[16] M.Kashiwara, ‘Crystallizing the \(q\)‐analogue of universal enveloping algebras’, Comm. Math. Phys.133 (1990) 249-260. · Zbl 0724.17009
[17] N.Kirillov and N.Reshetikhin, ‘q‐Weyl group and a multiplicative formula for universal \(R\)‐matrices’, Comm. Math. Phys.134 (1990) 421-431. · Zbl 0723.17014
[18] S.Kolb, ‘Quantum symmetric Kac‐Moody pairs’, Adv. Math.267 (2014) 395-469. · Zbl 1300.17011
[19] S.Kolb, ‘Braided module categories via quantum symmetric pairs’, Proc. Lond. Math. Soc.121 (2020) 1-31. · Zbl 1486.17026
[20] S.Kolb and J.Stokman, ‘Reflection equation algebras, coideal subalgebras and their centres’, Selecta Math. (N.S.)15 (2009) 621. · Zbl 1236.17023
[21] G.Letzter, ‘Symmetric pairs for quantized enveloping algebras’, J. Algebra220 (1999) 729-767. · Zbl 0956.17007
[22] G.Letzter, Coideal subalgebras and quantum symmetric pairs, New Directions in Hopf Algebras, MSRI publications 43 (Cambridge University Press, Cambridge, 2002) 117-166. · Zbl 1025.17005
[23] G.Letzter, ‘Quantum symmetric pairs and their zonal spherical functions’, Transform. Groups8 (2003) 261-292. · Zbl 1107.17010
[24] S. Z.Levendorskiĭ and Ya. S.Soibelman, ‘Some applications of the quantum Weyl groups’, J. Geom. Phys.7 (1990) 241-254. · Zbl 0729.17009
[25] G.Lusztig, ‘Coxeter orbits and eigenspaces of Frobenius’, Invent. Math.28 (1976) 101-159. · Zbl 0366.20031
[26] G.Lusztig, Introduction to quantum groups (Birkhäuser, Boston, MA, 1994). · Zbl 0845.20034
[27] G.Lusztig, Hecke algebras with unequal parameters, CRM Monographs Series 18, (American Mathematical Society, Providence, RI, 2003). (Enlarged and updated version at arXiv:math/0208154v2.) · Zbl 1051.20003
[28] A.Mudrov, ‘Characters of \(U_q ( \mathfrak{gl} ( n ) )\)‐reflection equation algebra’, Lett. Math. Phys.60 (2002) 283-291. · Zbl 1008.17011
[29] M.Noumi, M. S.Dijkhuizen and T.Sugitani, ‘Multivariable Askey‐Wilson polynomials and quantum complex Grassmannians’, AMS Fields Inst. Commun.14 (1997) 167-177. · Zbl 0877.33012
[30] M.Noumi and T.Sugitani, ‘Quantum symmetric spaces and related q‐orthogonal polynomials’, Group theoretical methods in Physics (ICGTMP)(Toyonaka, Japan, 1994) (World Scientific Publishing, River Edge, NJ, 1995) 28-40. · Zbl 0898.33013
[31] I.Satake, Classification theory on semi‐simple algebraic groups, Lecture Notes in Pure and Applied Mathematics 3 (Dekker, New York, 1971). · Zbl 0226.20037
[32] J.Stokman, ‘Generalized Onsager algebras’, Algebr. Represent. Theory (2019) 1-19. https://doi.org/10.1007/s10468-019-09903-6. · Zbl 1479.17042 · doi:10.1007/s10468-019-09903-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.