×

Dilational interpolatory inequalities. (English) Zbl 1225.65063

The authors propose a new class of Hilbert scales for better error estimates of numerical peak sharpening procedures for solving improperly posed operator equations. Dilational interpolatory inequalities are constructed with one-parameter families of index functions of variable Hilbert scales and dilation of the selected index functions. They contain the ordinary Hilbert scale interpolatory inequalities as special cases. Properties of the proposed interpolatory inequalities and their improvements on the error estimates for peak sharpening deconvolution are discussed.
Relationships to Gaussian, Lorentzian deconvolution are established along with potential application to Voigt and exponential peaks. An analysis of deconvolution peak sharpening is used as an example to illustrate the application of the dilateral interpolatory inequality in deriving approximate error estimates.
It would be more helpful to the numeric community if the paper would be more easily understandable.
Reviewer: Zhen Mei (Toronto)

MSC:

65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J15 Numerical solutions to equations with nonlinear operators
Full Text: DOI

References:

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Leland C. Allen, H. M. Gladney, and S. H. Glarum, Resolution enhancement for spectra of chemical and physical interest, The Journal of Chemical Physics 40 (1964), no. 11, 3135-3141.
[3] Pascal Bégout and Fernando Soria, A generalized interpolation inequality and its application to the stabilization of damped equations, J. Differential Equations 240 (2007), no. 2, 324 – 356. · Zbl 1117.93053 · doi:10.1016/j.jde.2007.06.003
[4] Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. · Zbl 0863.15001
[5] Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. · Zbl 0859.65054
[6] Markus Grasmair, Markus Haltmeier, and Otmar Scherzer, Sparse regularization with \?^{\?} penalty term, Inverse Problems 24 (2008), no. 5, 055020, 13. · Zbl 1157.65033 · doi:10.1088/0266-5611/24/5/055020
[7] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0545.65034
[8] Markus Hegland, An optimal order regularization method which does not use additional smoothness assumptions, SIAM J. Numer. Anal. 29 (1992), no. 5, 1446 – 1461. · Zbl 0760.65053 · doi:10.1137/0729083
[9] Markus Hegland, Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization, Appl. Anal. 59 (1995), no. 1-4, 207 – 223. · Zbl 0841.65039 · doi:10.1080/00036819508840400
[10] M. Hegland and R. S. Anderssen, A mollification framework for improperly posed problems, Numer. Math. 78 (1998), no. 4, 549 – 575. · Zbl 0896.65042 · doi:10.1007/s002110050325
[11] Markus Hegland and Robert S. Anderssen, Resolution enhancement of spectra using differentiation, Inverse Problems 21 (2005), no. 3, 915 – 934. · Zbl 1080.65124 · doi:10.1088/0266-5611/21/3/008
[12] S. G. Kreĭn and Ju. I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89 – 168 (Russian). · Zbl 0173.15702
[13] Peter Mathé and Sergei V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems 19 (2003), no. 3, 789 – 803. · Zbl 1026.65040 · doi:10.1088/0266-5611/19/3/319
[14] Peter Mathé and Sergei V. Pereverzev, Regularization of some linear ill-posed problems with discretized random noisy data, Math. Comp. 75 (2006), no. 256, 1913 – 1929. · Zbl 1103.62031
[15] Peter Mathé and Ulrich Tautenhahn, Interpolation in variable Hilbert scales with application to inverse problems, Inverse Problems 22 (2006), no. 6, 2271 – 2297. · Zbl 1116.47014 · doi:10.1088/0266-5611/22/6/022
[16] M. T. Nair, S. V. Pereverzev, and U. Tautenhahn, Regularization in Hilbert scales under general smoothing conditions, Inverse Problems 21 (2005), no. 6, 1851 – 1869. · Zbl 1093.65057 · doi:10.1088/0266-5611/21/6/003
[17] Frank Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable Anal. 18 (1984), no. 1-2, 29 – 37. · Zbl 0504.65031 · doi:10.1080/00036818408839508
[18] J.J. Olivero and R.L. Longbothum, Empirical fits to the Voigt line width: A brief review, Journal of Quantitative Spectroscopy and Radiative Transfer 17 (1977), no. 2, 233-236.
[19] Ronny Ramlau and Gerd Teschke, A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints, Numer. Math. 104 (2006), no. 2, 177 – 203. · Zbl 1101.65056 · doi:10.1007/s00211-006-0016-3
[20] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0253.46001
[21] Torsten Schröter and Ulrich Tautenhahn, Error estimates for Tikhonov regularization in Hilbert scales, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 155 – 168. · Zbl 0807.65059 · doi:10.1080/01630569408816556
[22] Ulrich Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal. 33 (1996), no. 6, 2120 – 2130. · Zbl 0865.65040 · doi:10.1137/S0036142994269411
[23] Paul R. Wiley, Greg J. Tanner, Peter M. Chandler, and Robert S. Anderssen, Molecular Classification of Barley (Hordeum vulgare L.) Mutants Using Derivative NIR Spectroscopy, Journal of Agricultural and Food Chemistry 57 (2009), no. 10, 4042.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.