×

Error estimates for Tikhonov regularization in Hilbert scales. (English) Zbl 0807.65059

The authors consider the method of Tikhonov regularization in Hilbert scales for finding solutions \(x^*\) of the ill-posed linear and nonlinear operator equation \(A(x)= z\), where \(A: X\to Y\) is an operator between two Hilbert spaces. The method consists of minimizing the functional \[ J_ \alpha(x):= \| A(x)- z^ \delta\|^ 2+ \alpha\| x- \bar x\|^ 2_ s,\quad \alpha>0, \] where \(\| z^ \delta- z\|\leq \delta\) and \(\|\cdot\|_ s\) is the norm in a Hilbert scale \(X_ s\). Assuming \(\| A(x)- A(x^*)\|\sim \| x- x^*\|_{-a}\) and \(x^*- x\in X_{2\gamma}\) for some \(a\geq 0\) and \(\gamma\geq 0\), they prove that the choice of the regularization parameter \(\alpha\) by Morozov’s discrepancy principle leads to optimal convergence rates if \(2\gamma\in [s,2s+ a]\). They also discuss convergence rate results for the case when \(2\gamma\) in this interval and apply the results to linear integral equations.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
47A50 Equations and inequalities involving linear operators, with vector unknowns
65R30 Numerical methods for ill-posed problems for integral equations
65R20 Numerical methods for integral equations
47J25 Iterative procedures involving nonlinear operators
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
45B05 Fredholm integral equations
Full Text: DOI

References:

[1] Adams R., Sobolev spaces (1975)
[2] Baumeister J., Stable solution of inverse problems (1987) · Zbl 0623.35008
[3] DOI: 10.1088/0266-5611/5/4/007 · Zbl 0695.65037 · doi:10.1088/0266-5611/5/4/007
[4] Groetsch C.W., The theory of Tikhonov regularization for Fredholm integral equations of the first kind (1984) · Zbl 0545.65034
[5] Hofmann B., Regularization for applied inverse and ill-posed problems 85 (1986) · Zbl 0606.65038
[6] DOI: 10.1070/RM1966v021n02ABEH004151 · Zbl 0173.15702 · doi:10.1070/RM1966v021n02ABEH004151
[7] Louis A.K., Inverse und schlecht gestellte Probleme (1988) · Zbl 0667.65045
[8] Morozov V.A., Soviet Math. Doklady 7 pp 414– (1966)
[9] DOI: 10.1080/00036818408839508 · Zbl 0504.65031 · doi:10.1080/00036818408839508
[10] DOI: 10.1137/0725074 · Zbl 0675.65049 · doi:10.1137/0725074
[11] DOI: 10.1080/01630569008816362 · Zbl 0691.65050 · doi:10.1080/01630569008816362
[12] DOI: 10.1007/BF01386397 · Zbl 0675.65053 · doi:10.1007/BF01386397
[13] Tautenhahn U., Inverse Problems 57 (1990) · Zbl 0713.65046
[14] Tikhonov A.N., Solution of ill-posed problems (1977)
[15] Wahba, G. 1980. ”Ill-posed problems: Numerical and statistical methods for mildy, moderately and severely ill-posed problems with noisy data”. Univ. Wisconsin. Technical Report 595
[16] Wahba G., Spline models for observational data · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.