×

Multimodal 3D shape reconstruction under calibration uncertainty using parametric level set methods. (English) Zbl 07196104

Summary: We consider the problem of 3D shape reconstruction from multimodal data, given uncertain calibration parameters. Typically, 3D data modalities can come in diverse forms such as sparse point sets, volumetric slices, and 2D photos. To jointly process these data modalities, we exploit a parametric level set method that utilizes ellipsoidal radial basis functions. This method not only allows us to analytically and compactly represent the object; it also confers on us the ability to overcome calibration-related noise that originates from inaccurate acquisition parameters. This essentially implicit regularization leads to a highly robust and scalable reconstruction, surpassing other traditional methods. In our results we first demonstrate the ability of the method to compactly represent complex objects. We then show that our reconstruction method is robust both to a small number of measurements and to noise in the acquisition parameters. Finally, we demonstrate our reconstruction abilities from diverse modalities such as volume slices obtained from liquid displacement (similar to CT scans and X-rays) and visual measurements obtained from shape silhouettes as well as point clouds.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J22 Numerical solution to inverse problems in abstract spaces
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Software:

Manopt; jInv; PointNet; Julia

References:

[1] K. Aberman, O. Katzir, Q. Zhou, Z. Luo, A. Sharf, C. Greif, B. Chen, and D. Cohen-Or, Dip transform for 3D shape reconstruction, ACM Trans. Graphics, 36 (2017), 79.
[2] A. Aghasi, M. Kilmer, and E. L. Miller, Parametric level set methods for inverse problems, SIAM J. Imaging Sci., 4 (2011), pp. 618-650, https://doi.org/10.1137/100800208. · Zbl 1219.65053
[3] A. Aghasi and J. Romberg, Sparse shape reconstruction, SIAM J. Imaging Sci., 6 (2013), pp. 2075-2108, https://doi.org/10.1137/130911573. · Zbl 1281.65026
[4] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, \( \ell_1\)-sparse reconstruction of sharp point set surfaces, ACM Trans. Graphics, 29 (2010), 135.
[5] S. Basu and Y. Bresler, Uniqueness of tomography with unknown view angles, IEEE Trans. Image Process., 9 (2000), pp. 1094-1106. · Zbl 0969.65113
[6] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, and C. Silva, State of the art in surface reconstruction from point clouds, in Eurographics State of the Art Reports, The Eurographics Association, Geneva, Switzerland, 2014, pp. 161-185.
[7] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine, A. Sharf, and C. T. Silva, A survey of surface reconstruction from point clouds, Computer Graphics Forum, 36 (2017), pp. 301-329.
[8] A. Bermano, A. Vaxman, and C. Gotsman, Online reconstruction of 3D objects from arbitrary cross-sections, ACM Trans. Graphics, 30 (2011), 113.
[9] P. J. Besl and N. D. McKay, Method for registration of 3-D shapes, in Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611, International Society for Optics and Photonics, Bellingham, WA, 1992, pp. 586-606.
[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[11] F. Bleichrodt, J. Sijbers, J. de Beenhouwer, and K. J. Batenburg, An alignment method for fan beam tomography, in Proceedings of the 1st International Conference on Tomography of Materials and Structures, Ghent, Belgium, 2013, pp. 103-106.
[12] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, Manopt, a MATLAB toolbox for optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455-1459. · Zbl 1319.90003
[13] E. Bretin, F. Dayrens, and S. Masnou, Volume reconstruction from slices, SIAM J. Imaging Sci., 10 (2017), pp. 2326-2358, https://doi.org/10.1137/17M1116283. · Zbl 1408.49044
[14] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans, Reconstruction and representation of 3D objects with radial basis functions, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 2001, pp. 67-76.
[15] W. Chen, X. Han, G. Li, C. Chen, J. Xing, Y. Zhao, and H. Li, Deep RBFNet: Point Cloud Feature Learning Using Radial Basis Functions, preprint, https://arxiv.org/abs/1812.04302, 2018.
[16] D. Cremers and K. Kolev, Multiview stereo and silhouette consistency via convex functionals over convex domains, IEEE Trans. Pattern Anal. Machine Intel., 33 (2011), pp. 1161-1174.
[17] S. Cuomo, A. Galletti, G. Giunta, and A. Starace, Surface reconstruction from scattered point via RBF interpolation on GPU, in Proceedings of the 2013 IEEE Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, Washington, DC, 2013, pp. 433-440.
[18] E. De Sturler, S. Gugercin, M. E. Kilmer, S. Chaturantabut, C. Beattie, and M. O’Connell, Nonlinear parametric inversion using interpolatory model reduction, SIAM J. Sci. Comput., 37 (2015), pp. B495-B517, https://doi.org/10.1137/130946320. · Zbl 1433.65194
[19] S. W. Fung and L. Ruthotto, An Uncertainty-Weighted Asynchronous ADMM Method for Parallel PDE Parameter Estimation, preprint, https://arxiv.org/abs/1806.00192, 2018. · Zbl 1428.65067
[20] E. Haber, Computational Methods in Geophysical Electromagnetics, Math. in Industry 1, SIAM, Philadelphia, 2014, https://doi.org/10.1137/1.9781611973808.
[21] L. Houben and M. B. Sadan, Refinement procedure for the image alignment in high-resolution electron tomography, Ultramicroscopy, 111 (2011), pp. 1512-1520.
[22] A. Kadu, T. van Leeuwen, and K. J. Batenburg, A parametric level-set method for partially discrete tomography, in International Conference on Discrete Geometry for Computer Imagery, Springer, New York, 2017, pp. 122-134. · Zbl 1430.94024
[23] A. Kadu, T. van Leeuwen, and W. A. Mulder, Salt reconstruction in full-waveform inversion with a parametric level-set method, IEEE Trans. Comput. Imaging, 3 (2017), pp. 305-315.
[24] B. Kainz, M. Steinberger, W. Wein, M. Kuklisova-Murgasova, C. Malamateniou, K. Keraudren, T. Torsney-Weir, M. Rutherford, P. Aljabar, J. V. Hajnal, and D. Rueckert, Fast volume reconstruction from motion corrupted stacks of 2D slices, IEEE Trans. Med. Imaging, 34 (2015), pp. 1901-1913.
[25] J. Kim and C.-O. Lee, Three-dimensional volume reconstruction using two-dimensional parallel slices, SIAM J. Imaging Sci., 12 (2019), pp. 1-27, https://doi.org/10.1137/18M1189634. · Zbl 1423.94007
[26] K. Kolev, T. Brox, and D. Cremers, Fast joint estimation of silhouettes and dense 3D geometry from multiple images, IEEE Trans. Pattern Anal. Machine Intell., 34 (2012), pp. 493-505.
[27] K. Kolev, M. Klodt, T. Brox, and D. Cremers, Continuous global optimization in multiview 3D reconstruction, Internat. J. Comput. Vis., 84 (2009), pp. 80-96.
[28] F. Larusson, P. G. Anderson, E. Rosenberg, M. E. Kilmer, A. Sassaroli, S. Fantini, and E. L. Miller, Parametric estimation of 3D tubular structures for diffuse optical tomography, Biomed. Optics Express, 4 (2013), pp. 271-286.
[29] A. Laurentini, The visual hull concept for silhouette-based image understanding, IEEE Trans. Pattern Anal. Machine Intell., 16 (1994), pp. 150-162.
[30] L. Liu, C. Bajaj, J. O. Deasy, D. A. Low, and T. Ju, Surface reconstruction from non-parallel curve networks, Computer Graphics Forum, 27 (2008), pp. 155-163.
[31] M. S. McMillan, C. Schwarzbach, E. Haber, and D. W. Oldenburg, 3D parametric hybrid inversion of time-domain airborne electromagnetic data, Geophys., 80 (2015), pp. K25-K36.
[32] L. Métivier, R. Brossier, S. Operto, and J. Virieux, Full waveform inversion and the truncated Newton method, SIAM Rev., 59 (2017), pp. 153-195, https://doi.org/10.1137/16M1093239. · Zbl 1357.86001
[33] Y. Ohtake, A. Belyaev, and H.-P. Seidel, A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions, in Shape Modeling International 2003, IEEE, Washington, DC, 2003, pp. 153-161.
[34] D. Y. Parkinson, C. Knoechel, C. Yang, C. A. Larabell, and M. A. Le Gros, Automatic alignment and reconstruction of images for soft X-ray tomography, J. Structural Biol., 177 (2012), pp. 259-266.
[35] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, Pointnet++: Deep hierarchical feature learning on point sets in a metric space, in Advances in Neural Information Processing Systems, Long Beach, CA, 2017, pp. 5099-5108.
[36] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[37] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM 2001), Vol. 1, Quebec, Canada, 2001, pp. 145-152.
[38] L. Ruthotto, E. Treister, and E. Haber, jInv-a flexible Julia package for PDE parameter estimation, SIAM J. Sci. Comput., 39 (2017), pp. S702-S722, https://doi.org/10.1137/16M1081063. · Zbl 1373.86013
[39] F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM Control Optim. Calc. Var., 1 (1996), pp. 17-33. · Zbl 0870.49016
[40] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd ed., Cambridge Monogr. Appl. Comput. Math. 3, Cambridge University Press, Cambridge, UK, 1999. · Zbl 0973.76003
[41] A. Singer and Y. Shkolnisky, Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming, SIAM J. Imaging Sci., 4 (2011), pp. 543-572, https://doi.org/10.1137/090767777. · Zbl 1216.92045
[42] R. Y. Takimoto, M. d. S. G. Tsuzuki, R. Vogelaar, T. de Castro Martins, A. K. Sato, Y. Iwao, T. Gotoh, and S. Kagei, 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor, Mechatronics, 35 (2016), pp. 11-22.
[43] G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R. Martin, X.-F. Sun, and P. L. Rosin, Registration of 3D point clouds and meshes: A survey from rigid to nonrigid, IEEE Trans. Vis. Comput. Graphics, 19 (2012), pp. 1199-1217.
[44] E. Treister and E. Haber, Full waveform inversion guided by travel time tomography, SIAM J. Sci. Comput., 39 (2017), pp. S587-S609, https://doi.org/10.1137/16M1082718. · Zbl 1373.86014
[45] C.-Y. Tsai and C.-H. Huang, Indoor scene point cloud registration algorithm based on RGB-D camera calibration, Sensors, 17 (2017), E1874.
[46] T. van Leeuwen, S. Maretzke, and K. J. Batenburg, Automatic alignment for three-dimensional tomographic reconstruction, Inverse Problems, 34 (2018), 024004. · Zbl 1453.65466
[47] L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, Internat. J. Comput. Vis., 50 (2002), pp. 271-293. · Zbl 1012.68782
[48] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898717570. · Zbl 1008.65103
[49] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4 (1995), pp. 389-396. · Zbl 0838.41014
[50] R. T. Whitaker, A level-set approach to 3D reconstruction from range data, Internat. J. Comput. Vis., 29 (1998), pp. 203-231.
[51] C. Yang, E. G. Ng, and P. A. Penczek, Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm, J. Structural Biol., 149 (2005), pp. 53-64.
[52] K. Yin, H. Huang, P. Long, A. Gaissinski, M. Gong, and A. Sharf, Full 3D plant reconstruction via intrusive acquisition, Computer Graphics Forum, 35 (2016), pp. 272-284.
[53] G. Zang, R. Idouchi, R. Tao, G. Lubineau, P. Wonka, and W. Heidrich, Space-time tomography for continuously deforming objects, ACM Trans. Graphics, 37 (2018), 100.
[54] Q. Zheng, X. Fan, M. Gong, A. Sharf, O. Deussen, and H. Huang, 4D reconstruction of blooming flowers, Computer Graphics Forum, 36 (2017), pp. 405-417.
[55] M. Zou, M. Holloway, N. Carr, and T. Ju, Topology-constrained surface reconstruction from cross-sections, ACM Trans. Graphics, 34 (2015), 128. · Zbl 1334.68275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.