×

Clockwork cosmology. (English) Zbl 1531.83205

Summary: The higher order generalisation of the clockwork mechanism to gravitational interactions provides a means to generate an exponentially suppressed coupling to matter from a fundamental theory of multiple interacting gravitons, without introducing large hierarchies in the underlying potential and without the need for a dilaton, suggesting a possible application to the hierarchy problem. We work in the framework of ghost free multi-gravity with “nearest-neighbour” interactions, and present a formalism by which one is able to construct potentials such that the theory will always exhibit this clockwork effect. We also consider cosmological solutions to the general theory, where all metrics are of FRW form, with site-dependent scale factors/lapses. We demonstrate the existence of multiple deSitter vacua where all metrics share the same Hubble parameter, and we solve the modified Einstein equations numerically for an example clockwork model constructed using our formalism, finding that the evolution of the metric that matter couples to is essentially equivalent to that of general relativity at the modified Planck scale. It is important to stress that while we focus on the application to clockwork theories, our work is entirely general and facilitates finding cosmological solutions to any ghost free multi-gravity theory with “nearest-neighbour” interactions. Moreover, we clarify previous work on the continuum limit of the theory, which is generically a scalar-tensor braneworld, using the Randall-Sundrum model as a special case and showing how the discrete-clockwork cosmological results map to the continuum results in the appropriate limit.

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Csáki, Csaba; Tanedo, Philip, Beyond the Standard Model, 169-268 (2015)
[2] de Gouvea, Andre; Hernandez, Daniel; Tait, Tim M. P., Criteria for Natural Hierarchies, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.115005
[3] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics. Vol. 103, revised edition, Princeton University Press (2020).
[4] Randall, Lisa; Sundrum, Raman, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373 (1999) · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[5] Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, G. R., The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 263-272 (1998) · Zbl 1355.81103 · doi:10.1016/S0370-2693(98)00466-3
[6] Niedermann, Florian; Padilla, Antonio; Saffin, Paul M., Higher Order Clockwork Gravity, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.104014
[7] Avgoustidis, Anastasios; Niedermann, Florian; Padilla, Antonio; Saffin, Paul M., Deconstructing higher order clockwork gravity, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.124007
[8] Giudice, Gian F.; McCullough, Matthew, A Clockwork Theory, JHEP, 02, 036 (2017) · Zbl 1377.83100 · doi:10.1007/JHEP02(2017)036
[9] Brodsky, Stanley J.; Hoyer, Paul, The h̅ Expansion in Quantum Field Theory, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.045026
[10] Kaplan, David E.; Rattazzi, Riccardo, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.085007
[11] Choi, Kiwoon; Im, Sang Hui, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP, 01, 149 (2016) · Zbl 1388.81796 · doi:10.1007/JHEP01(2016)149
[12] Graham, Peter W.; Kaplan, David E.; Rajendran, Surjeet, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.221801
[13] Choi, Kiwoon; Kim, Hyungjin; Yun, Seokhoon, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.023545
[14] Hambye, Thomas; Teresi, Daniele; Tytgat, Michel H. G., A Clockwork WIMP, JHEP, 07, 047 (2017) · doi:10.1007/JHEP07(2017)047
[15] Alonso, Rodrigo; Carmona, Adrian; Dillon, Barry M.; Kamenik, Jernej F.; Martin Camalich, Jorge; Zupan, Jure, A clockwork solution to the flavor puzzle, JHEP, 10, 099 (2018) · doi:10.1007/JHEP10(2018)099
[16] Kehagias, Alex; Riotto, Antonio, Clockwork Inflation, Phys. Lett. B, 767, 73-80 (2017) · Zbl 1404.83107 · doi:10.1016/j.physletb.2017.01.042
[17] Ahmed, Aqeel; Dillon, Barry M., Clockwork Goldstone Bosons, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.115031
[18] Ben-Dayan, Ido, Generalized Clockwork Theory, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.096006
[19] Craig, Nathaniel; Garcia Garcia, Isabel; Sutherland, Dave, Disassembling the Clockwork Mechanism, JHEP, 10, 018 (2017) · Zbl 1383.83007 · doi:10.1007/JHEP10(2017)018
[20] Giudice, Gian F.; McCullough, Matthew, Comment on “Disassembling the Clockwork Mechanism”CERN-TH-2017-108 (2017) · Zbl 1377.83100
[21] Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit, Phenomenology of TeV Little String Theory from Holography, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.081602
[22] Arkani-Hamed, Nima; Schwartz, Matthew D., Discrete gravitational dimensions, Phys. Rev. D, 69 (2004) · Zbl 1405.83011 · doi:10.1103/PhysRevD.69.104001
[23] Hinterbichler, Kurt; Rosen, Rachel A., Interacting Spin-2 Fields, JHEP, 07, 047 (2012) · Zbl 1397.83153 · doi:10.1007/JHEP07(2012)047
[24] Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine, Brane world cosmology, Rept. Prog. Phys., 67, 2183-2232 (2004) · doi:10.1088/0034-4885/67/12/R02
[25] Langlois, David; Maeda, K.; Sasaki, M., Brane cosmology: An Introduction, Prog. Theor. Phys. Suppl., 148, 181-212 (2003) · Zbl 1051.83022 · doi:10.1143/PTPS.148.181
[26] Boulware, D. G.; Deser, Stanley, Can gravitation have a finite range?, Phys. Rev. D, 6, 3368-3382 (1972) · doi:10.1103/PhysRevD.6.3368
[27] Nomura, Kouichi; Soda, Jiro, When is Multimetric Gravity Ghost-free?, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.084052
[28] Scargill, James H. C.; Noller, Johannes; Ferreira, Pedro G., Cycles of interactions in multi-gravity theories, JHEP, 12, 160 (2014) · Zbl 1333.83170 · doi:10.1007/JHEP12(2014)160
[29] L. Losonczi, Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hung.60 (1992) 309. · Zbl 0771.15004 · doi:10.1007/BF00051649
[30] W.-C. Yueh, Eigenvalues of several tridiagonal matrices, Appl. Math. E-Notes5 (2005) 66. · Zbl 1068.15006
[31] C.M. Da Fonseca and V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Math. Hung.160 (2020) 376. · Zbl 1449.15012 · doi:10.1007/s10474-019-00970-1
[32] Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S., The Cosmology of Interacting Spin-2 Fields, JCAP, 02 (2014) · doi:10.1088/1475-7516/2014/02/015
[33] de Rham, Claudia; Gabadadze, Gregory, Generalization of the Fierz-Pauli Action, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.044020
[34] de Rham, Claudia; Gabadadze, Gregory; Tolley, Andrew J., Resummation of Massive Gravity, Phys. Rev. Lett., 106 (2011) · Zbl 1306.83062 · doi:10.1103/PhysRevLett.106.231101
[35] Akrami, Yashar; Koivisto, Tomi S.; Mota, David F.; Sandstad, Marit, Bimetric gravity doubly coupled to matter: theory and cosmological implications, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/046
[36] Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R., Cosmology with three interacting spin-2 fields, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.043530
[37] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A, 173, 211-232 (1939) · Zbl 0023.43004 · doi:10.1098/rspa.1939.0140
[38] Randall, Lisa; Sundrum, Raman, An Alternative to compactification, Phys. Rev. Lett., 83, 4690-4693 (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[39] York, James W. Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28, 1082-1085 (1972) · doi:10.1103/PhysRevLett.28.1082
[40] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, in Euclidean Quantum Gravity, World Scientific (1993), pg. 233. · Zbl 0874.53056
[41] Israel, W., Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B, 44S10, 1 (1966) · doi:10.1007/BF02710419
[42] Shtanov, Yu. V., On brane world cosmology (2000)
[43] R.M. Wald, General relativity, University of Chicago press (2010). · Zbl 0549.53001
[44] Binetruy, Pierre; Deffayet, Cedric; Ellwanger, Ulrich; Langlois, David, Brane cosmological evolution in a bulk with cosmological constant, Phys. Lett. B, 477, 285-291 (2000) · doi:10.1016/S0370-2693(00)00204-5
[45] Maartens, Roy, Geometry and dynamics of the brane world (2001) · Zbl 1005.83027
[46] Goldberger, Walter D.; Wise, Mark B., Modulus stabilization with bulk fields, Phys. Rev. Lett., 83, 4922-4925 (1999) · doi:10.1103/PhysRevLett.83.4922
[47] de Rham, Claudia; Heisenberg, Lavinia; Ribeiro, Raquel H., Quantum Corrections in Massive Gravity, Phys. Rev. D, 88 (2013) · Zbl 1312.83027 · doi:10.1103/PhysRevD.88.084058
[48] Heisenberg, Lavinia, Quantum corrections in massive bigravity and new effective composite metrics, Class. Quant. Grav., 32 (2015) · Zbl 1328.83139 · doi:10.1088/0264-9381/32/10/105011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.