×

Spatio-chromatic information available from different neural layers via gaussianization. (English) Zbl 1467.92019

Summary: How much visual information about the retinal images can be extracted from the different layers of the visual pathway? This question depends on the complexity of the visual input, the set of transforms applied to this multivariate input, and the noise of the sensors in the considered layer. Separate subsystems (e.g. opponent channels, spatial filters, nonlinearities of the texture sensors) have been suggested to be organized for optimal information transmission. However, the efficiency of these different layers has not been measured when they operate together on colorimetrically calibrated natural images and using multivariate information-theoretic units over the joint spatio-chromatic array of responses. In this work, we present a statistical tool to address this question in an appropriate (multivariate) way. Specifically, we propose an empirical estimate of the information transmitted by the system based on a recent Gaussianization technique. The total correlation measured using the proposed estimator is consistent with predictions based on the analytical Jacobian of a standard spatio-chromatic model of the retina-cortex pathway. If the noise at certain representation is proportional to the dynamic range of the response, and one assumes sensors of equivalent noise level, then transmitted information shows the following trends: (1) progressively deeper representations are better in terms of the amount of captured information, (2) the transmitted information up to the cortical representation follows the probability of natural scenes over the chromatic and achromatic dimensions of the stimulus space, (3) the contribution of spatial transforms to capture visual information is substantially greater than the contribution of chromatic transforms, and (4) nonlinearities of the responses contribute substantially to the transmitted information but less than the linear transforms.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
91E30 Psychophysics and psychophysiology; perception

References:

[1] MacKay, D.; McCulloch, W., The limiting capacity of a neuronal link, Bull Math Biophys, 14, 127-135 (1952) · doi:10.1007/BF02477711
[2] Barlow, HB, Sensory mechanisms, the reduction of redundancy, and intelligence, Proc. of the nat. phys. Lab. symposium on the mechanization of thought process, 535-539 (1959)
[3] Barlow, H., Redundancy reduction revisited, Netw Comput Neural Syst, 12, 3, 241-253 (2001) · doi:10.1080/net.12.3.241.253
[4] Dimitrov, A.; Lazar, A.; Victor, J., Information theory in neuroscience, J Comput Neurosci, 30, 1, 1-5 (2011) · Zbl 1446.92122 · doi:10.1007/s10827-011-0314-3
[5] Friston, K., The free-energy principle: a rough guide to the brain?, Trends Cogn Sci, 13, 7, 293-301 (2009) · doi:10.1016/j.tics.2009.04.005
[6] Tkacik, G.; Bialek, W., Information processing in living systems, Annu Rev Condens Matter Phys, 7, 89-117 (2016) · doi:10.1146/annurev-conmatphys-031214-014803
[7] Strong, SP; Koberle, R.; de Ruyter van Steveninck, RR; Bialek, W., Entropy and information in neural spike trains, Phys Rev Lett, 80, 197-200 (1998) · doi:10.1103/PhysRevLett.80.197
[8] Rehn, M.; Sommer, F., A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields, J Comput Neurosci, 22, 135-146 (2007) · doi:10.1007/s10827-006-0003-9
[9] Perge, J.; Koch, K.; Miller, R.; Sterling, P.; Balasubramanian, V., How the optic nerve allocates space, energy capacity, and information, J Neurosci, 29, 24, 7917-7928 (2009) · doi:10.1523/JNEUROSCI.5200-08.2009
[10] Sengupta, B.; Faisal, A.; Laughlin, S.; Niven, J., The effect of cell size and channel density on neuronal information encoding and energy efficiency, J Cereb Blood Flow Metab, 33, 1465-1473 (2013) · doi:10.1038/jcbfm.2013.103
[11] Harris, J.; Jolivet, R.; Engl, E.; Attwell, D., Energy-efficient information transfer by visual pathway synapses, Curr Biol, 25, 24, 3151-3160 (2015) · doi:10.1016/j.cub.2015.10.063
[12] Sterling, P.; Laughlin, S., Principles of neural design (2015), London: MIT Press, London
[13] Borghuis, B.; Ratliff, C.; Smith, R.; Sterling, P.; Balasubramanian, V., Design of a neuronal array, J Neurosci, 28, 12, 3178-3189 (2008) · doi:10.1523/JNEUROSCI.5259-07.2008
[14] Koch, K.; McLean, J.; Segev, R.; Freed, M.; Berry, M.; Balasubramanian, V.; Sterling, P., How much the eye tells the brain, Curr Biol, 16, 14, 1428-1434 (2006) · doi:10.1016/j.cub.2006.05.056
[15] Heeger, DJ, Normalization of cell responses in cat striate cortex, Vis Neurosci, 9, 2, 181-197 (1992) · doi:10.1017/S0952523800009640
[16] Carandini, M.; Heeger, D., Summation and division by neurons in visual cortex, Science, 264, 5163, 1333-1336 (1994) · doi:10.1126/science.8191289
[17] Tailby, C.; Solomon, S.; Dhruv, N.; Lennie, P., Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque, J Neurosci, 28, 5, 1131-1139 (2008) · doi:10.1523/JNEUROSCI.4682-07.2008
[18] Carandini, M.; Heeger, DJ, Normalization as a canonical neural computation, Nat Rev Neurosci, 13, 1, 51-62 (2012) · doi:10.1038/nrn3136
[19] Abrams, AB; Hillis, JM; Brainard, DH, The relation between color discrimination and color constancy: when is optimal adaptation task dependent?, Neural Comput, 19, 10, 2610-2637 (2007) · Zbl 1140.68513 · doi:10.1162/neco.2007.19.10.2610
[20] Fairchild, MD, Color appearance models (2013), Sussex: Wiley, Sussex
[21] Watson, BA, Perceptual-components architecture for digital video, J Opt Soc Am A, Opt Image Sci Vis, 7, 10, 1943-1954 (1990) · doi:10.1364/JOSAA.7.001943
[22] Watson, AB; Solomon, JA, Model of visual contrast gain control and pattern masking, JOSA A, 14, 9, 2379-2391 (1997) · doi:10.1364/JOSAA.14.002379
[23] Simoncelli, EP; Heeger, D., A model of neuronal responses in visual area MT, Vis Res, 38, 5, 743-761 (1998) · doi:10.1016/S0042-6989(97)00183-1
[24] Buchsbaum, G.; Gottschalk, A., Trichromacy, opponent colours coding and optimum colour information transmission in the retina, Proc R Soc Lond B, Biol Sci, 220, 1218, 89-113 (1983) · doi:10.1098/rspb.1983.0090
[25] Laughlin, SB; Braddick, OJ; Sleigh, AC, Matching coding to scenes to enhance efficiency, Physical and biological processing of images, 42-52 (1983), Berlin: Springer, Berlin
[26] MacLeod, D.; von der Twer, T.; Heyer, D.; Mausfeld, R., The pleistochrome: optimal opponent codes for natural colors, Color perception: from light to object (2003), Oxford: Oxford Univ. Press, Oxford
[27] Laparra, V.; Jiménez, S.; Camps-Valls, G.; Malo, J., Nonlinearities and adaptation of color vision from sequential principal curves analysis, Neural Comput, 24, 10, 2751-2788 (2012) · Zbl 1268.92080 · doi:10.1162/NECO_a_00342
[28] Hancock, P.; Baddeley, R.; Smith, L., The principal components of natural images, Network, 3, 61-70 (1991) · doi:10.1088/0954-898X_3_1_008
[29] Olshausen, B.; Field, D., Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 281, 607-609 (1996) · doi:10.1038/381607a0
[30] Ruderman, DL; Cronin, TW; Chiao, C-C, Statistics of cone responses to natural images: implications for visual coding, J Opt Soc Am A, 15, 2036-2045 (1998) · doi:10.1364/JOSAA.15.002036
[31] Doi, E.; Inui, T.; Lee, T.; Wachtler, T.; Sejnowski, T., Spatiochromatic receptive field properties derived from information-theoretic analyses of cone responses to natural scenes, Neural Comput, 15, 2, 397-417 (2003) · Zbl 1020.92009 · doi:10.1162/089976603762552960
[32] Gutmann, MU; Laparra, V.; Hyvärinen, A.; Malo, J., Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images, PLoS ONE, 9, 2 (2014) · doi:10.1371/journal.pone.0086481
[33] Hyvärinen A, Hurri J, Hoyer PO. Natural image statistics: a probabilistic approach to early computational vision. Heidelberg: Springer. · Zbl 1178.68622
[34] Schwartz, O.; Simoncelli, EP, Natural signal statistics and sensory gain control, Nat Neurosci, 4, 8, 819-825 (2001) · doi:10.1038/90526
[35] Malo, J.; Gutiérrez, J., V1 non-linear properties emerge from local-to-global non-linear ICA, Netw Comput Neural Syst, 17, 1, 85-102 (2006) · doi:10.1080/09548980500439602
[36] Laparra, V.; Malo, J., Visual aftereffects and sensory nonlinearities from a single statistical framework, Front Human Neurosci, 9 (2015) · doi:10.3389/fnhum.2015.00557
[37] Laparra, V.; Camps-Valls, G.; Malo, J., Iterative Gaussianization: from ICA to random rotations, IEEE Trans Neural Netw, 22, 4, 537-549 (2011) · doi:10.1109/TNN.2011.2106511
[38] Johnson, JE; Laparra, V.; Santos, R.; Camps, G.; Malo, J., Information theory in density destructors, 7th int. conf. Mach. Learn., ICML 2019, workshop on invertible normalization flows (2019)
[39] Laparra V, Johnson E, Camps G, Santos R, Malo J. Information theory measures via multidimensional Gaussianization. 2020. https://arxiv.org/abs/2010.03807.
[40] Martinez-Garcia, M.; Cyriac, P.; Batard, T.; Bertalmío, M.; Malo, J., Derivatives and inverse of cascaded linear+nonlinear neural models, PLoS ONE, 13, 10, 1-49 (2018) · doi:10.1371/journal.pone.0201326
[41] Martinez, M.; Bertalmío, M.; Malo, J., In praise of artifice reloaded: caution with natural image databases in modeling vision, Front Neurosci (2019) · doi:10.3389/fnins.2019.00008
[42] Lyu, S.; Simoncelli, EP, Nonlinear extraction of independent components of natural images using radial Gaussianization, Neural Comput, 21, 6, 1485-1519 (2009) · Zbl 1183.68692 · doi:10.1162/neco.2009.04-08-773
[43] Gomez-Villa, A.; Bertalmío, M.; Malo, J., Visual information flow in Wilson-Cowan networks, J Neurophysiol, 123, 6, 2249-2268 (2020) · doi:10.1152/jn.00487.2019
[44] Malo, J.; Laparra, V., Psychophysically tuned divisive normalization approximately factorizes the PDF of natural images, Neural Comput, 22, 12, 3179-3206 (2010) · Zbl 1207.92008 · doi:10.1162/NECO_a_00046
[45] Bullmore, E.; Sporns, O., The economy of brain network organization, Nat Rev Neurosci, 13, 336-349 (2012) · doi:10.1038/nrn3214
[46] Stockman, A.; Sharpe, LT, The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype, Vis Res, 40, 13, 1711-1737 (2000) · doi:10.1016/S0042-6989(00)00021-3
[47] Hurvich, LM; Jameson, D., An opponent-process theory of color vision, Psychol Rev, 64, 6, 384-404 (1957) · doi:10.1037/h0041403
[48] Capilla, P.; Malo, J.; Luque, M.; Artigas, JM, Colour representation spaces at different physiological levels: a comparative analysis, J Opt, 29, 5, 324 (1998) · doi:10.1088/0150-536X/29/5/003
[49] Stockman, A.; Brainard, DH; Bass, M., Color vision mechanisms, OSA handbook of optics, 147-152 (2010), New York: McGraw-Hill, New York
[50] Krauskopf, J.; Gegenfurtner, K., Color discrimination and adaptation, Vis Res, 32, 11, 2165-2175 (1992) · doi:10.1016/0042-6989(92)90077-V
[51] Romero, J.; García, JA; Jiménez del Barco, L.; Hita, E., Evaluation of color-discrimination ellipsoids in two-color spaces, J Opt Soc Am A, 10, 5, 827-837 (1993) · doi:10.1364/JOSAA.10.000827
[52] CIE-Commission. Colorimetry - Part 4: CIE 1976 L*a*b* colour space. Technical Report ISO/CIE 11664-4:2019. CIE; 1976.
[53] Luo, M.; Hunt, R., The structure of the CIE 1997 colour appearance model (CIECAM97s), Color Res Appl, 22, 138-146 (1998) · doi:10.1002/(SICI)1520-6378(199806)23:3<138::AID-COL5>3.0.CO;2-R
[54] Ringach, DL, Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex, J Neurophysiol, 88, 1, 455-463 (2002) · doi:10.1152/jn.2002.88.1.455
[55] Shapley, R.; Hawken, M., Color in the cortex: single- and double-opponent cells, Vis Res, 51, 7, 701-717 (2011) · doi:10.1016/j.visres.2011.02.012
[56] Campbell, FW; Robson, JG, Application of Fourier analysis to the visibility of gratings, J Physiol, 197, 551-566 (1968) · doi:10.1113/jphysiol.1968.sp008574
[57] Mullen, KT, The CSF of human colour vision to red-green and yellow-blue chromatic gratings, J Physiol, 359, 381-400 (1985) · doi:10.1113/jphysiol.1985.sp015591
[58] Watson, AB; Malo, J., Video quality measures based on the standard spatial observer, Image processing. 2002. Proceedings. 2002 international conference on, 41 (2002), New York: IEEE, New York
[59] Malo, J.; Pons, A.; Felipe, A.; Artigas, J., Characterization of the human visual system threshold performance by a weighting function in the Gabor domain, J Mod Opt, 44, 1, 127-148 (1997) · doi:10.1080/09500349708232904
[60] Martinez-Uriegas, E.; Kelly, DH, Chromatic-achromatic multiplexing in human color vision, Vis. sci. and eng.: models and appl., 117-187 (1994), New York: Dekker, New York
[61] Cai, D.; DeAngelis, GC; Freeman, RD, Spatiotemporal receptive field organization in the LGN of cats and kittens, J Neurophysiol, 78, 2, 1045-1061 (1997) · doi:10.1152/jn.1997.78.2.1045
[62] Malo, J.; Epifanio, I.; Navarro, R.; Simoncelli, EP, Nonlinear image representation for efficient perceptual coding, IEEE Trans Image Process, 15, 1, 68-80 (2006) · doi:10.1109/TIP.2005.860325
[63] Wilson, HR; Cowan, JD, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 2, 55-80 (1973) · Zbl 0281.92003 · doi:10.1007/BF00288786
[64] Malo J, Esteve-Taboada J, Bertalmío M. Divisive normalization from Wilson-Cowan dynamics. Quant Biol. 2019. ArXiv: https://arxiv.org/abs/1906.08246.
[65] Ponomarenko, N.; Carli, M.; Lukin, V.; Egiazarian, K.; Astola, J.; Battisti, F., Color image database for evaluation of image quality metrics, Proc. int. workshop on multimedia signal processing, 403-408 (2008)
[66] Wang, Z.; Bovik, AC; Sheikh, HR; Simoncelli, EP, Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 4, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[67] Laparra, V.; Muñoz-Marí, J.; Malo, J., Divisive normalization image quality metric revisited, JOSA A, 27, 4, 852-864 (2010) · doi:10.1364/JOSAA.27.000852
[68] Hepburn, A.; Laparra, V.; Malo, J.; McConville, R.; Santos, R., Perceptnet: a human visual system inspired neural network for estimating perceptual distance, IEEE int. conf. im. proc. (ICIP), 121-125 (2020)
[69] Foster, DH; Amano, K.; Nascimento, SM, Time-lapse ratios of cone excitations in natural scenes, Vis Res, 120, 45-60 (2016) · doi:10.1016/j.visres.2015.03.012
[70] Nascimento, SM; Amano, K.; Foster, DH, Spatial distributions of local illumination color in natural scenes, Vis Res, 120, 39-44 (2016) · doi:10.1016/j.visres.2015.07.005
[71] Vazquez-Corral, J.; Párraga, C.; Baldrich, R.; Vanrell, M., Color constancy algorithms: psychophysical evaluation on a new dataset, J Imaging Sci Technol, 53, 3, 31105-1311059 (2009) · doi:10.2352/J.ImagingSci.Technol.2009.53.3.031105
[72] Cover, TM; Thomas, JA, Elements of information theory (2006), Hoboken: Wiley-Interscience, Hoboken · Zbl 1140.94001
[73] Huang, CW; Kruger, D., Proc. ICML workshop on invertible neural nets and normalizing flows. int. conf. mach. learn (2019)
[74] Huang, CW; Kruger, D., Proc. ICML workshop on invertible neural nets and normalizing flows. int. conf. mach. learn (2020)
[75] Inouye, D.; Ravikumar, P., Deep density destructors, 35th ICML, 2167-2175 (2018)
[76] Watanabe, S., Information theoretical analysis of multivariate correlation, IBM J Res Dev, 4, 1, 66-82 (1960) · Zbl 0097.35003 · doi:10.1147/rd.41.0066
[77] Studeny, M.; Vejnarova, J.; Jordan, MI, The multi-information function as a tool for measuring stochastic dependence, 261-298 (1998), Norwell: Kluwer Academic, Norwell · Zbl 0917.60013
[78] Kraskov, A.; Stögbauer, H.; Grassberger, P., Estimating mutual information, Phys Rev E, 69 (2004) · doi:10.1103/PhysRevE.69.066138
[79] Kozachenko, LF; Leonenko, NN, Sample estimate of the entropy of a random vector, Probl Inf Transm, 23, 95-101 (1987) · Zbl 0633.62005
[80] Szabó, Z., Information theoretical estimators toolbox, J Mach Learn Res, 15, 283-287 (2014) · Zbl 1317.68190
[81] Marin-Franch, I.; Foster, DH, Estimating information from image colors: an application to digital cameras and natural scenes, IEEE Trans Pattern Anal Mach Intell, 35, 1, 78-91 (2013) · doi:10.1109/TPAMI.2012.78
[82] Ahumada, A., Putting the visual system noise back in the picture, J Opt Soc Am A, 4, 12, 2372-2378 (1987) · doi:10.1364/JOSAA.4.002372
[83] Burgess, AE; Colborne, B., Visual signal detection. IV. Observer inconsistency, J Opt Soc Am A, 5, 4, 617-627 (1988) · doi:10.1364/JOSAA.5.000617
[84] Georgeson, M.; Meese, T., Fixed or variable noise in contrast discrimination? The jury’s still out, Vis Res, 46, 25, 4294-4303 (2006) · doi:10.1016/j.visres.2005.08.024
[85] Neri, P., How inherently noisy is human sensory processing?, Psychon Bull Rev, 17, 802-808 (2010) · doi:10.3758/PBR.17.6.802
[86] Goris, L.; Movshon, J.; Simoncelli, E., Partitioning neuronal variability, Nat Neurosci, 17, 6, 858-865 (2014) · doi:10.1038/nn.3711
[87] Moreno-Bote, R.; Beck, J.; Kanitscheider, I.; Pitkow, X.; Latham, P.; Pouget, A., Information-limiting correlations, Nat Neurosci, 17, 10, 1410-1417 (2014) · doi:10.1038/nn.3807
[88] Kanitscheider, I.; Coen-Cagli, R.; Pouget, A., Origin of information-limiting noise correlations, Proc Natl Acad Sci, 112, 50, 6973-6982 (2015) · doi:10.1073/pnas.1508738112
[89] Bethge, M., Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?, JOSA A, 23, 6, 1253-1268 (2006) · doi:10.1364/JOSAA.23.001253
[90] Foster, DH, The verriest lecture: color vision in an uncertain world, JOSA A, 35, 4, 192-201 (2018) · doi:10.1364/JOSAA.35.00B192
[91] Foster, DH; Nascimento, SMC; Amano, K., Information limits on neural identification of colored surfaces in natural scenes, Vis Neurosci, 21, 3, 331-336 (2004) · doi:10.1017/S0952523804213335
[92] Foster, DH; Marín-Franch, I.; Amano, K.; Nascimento, SMC, Approaching ideal observer efficiency in using color to retrieve information from natural scenes, J Opt Soc Am A, 26, 11, 14-24 (2009) · doi:10.1364/JOSAA.26.000B14
[93] Marin-Franch, I.; Foster, DH, Number of perceptually distinct surface colors in natural scenes, J Vis, 10, 9, 9-9 (2010) · doi:10.1167/10.9.9
[94] Foster, DH; Marin-Franch, I.; Nascimento, SMC, Coding efficiency of CIE color spaces, Proc. 16th color imag. conf., 285-288 (2008)
[95] Victor, J., Binless strategies for estimation of information from neural data, Phys Rev E, 66, 5 (2002) · doi:10.1103/PhysRevE.66.051903
[96] Sheikh, HR; Bovik, AC; de Veciana, G., An information fidelity criterion for image quality assessment using natural scene statistics, IEEE Trans Image Process, 14, 12, 2117-2128 (2005) · doi:10.1109/TIP.2005.859389
[97] Sheikh, HR; Bovik, AC, Image information and visual quality, IEEE Trans Image Process, 15, 2, 430-444 (2006) · doi:10.1109/TIP.2005.859378
[98] Malo, J., Information flow under cortical magnification: Gaussianization estimates and theoretical results, Comp. neurosci. CNS 2020. Workshop on inf. theory (2020)
[99] Malo, J.; Gutiérrez, J.; Epifanio, I.; Ferri, FJ; Artigas, JM, Perceptual feedback in multigrid motion estimation using an improved dct quantization, IEEE Trans Image Process, 10, 10, 1411-1427 (2001) · Zbl 1061.68561 · doi:10.1109/83.951528
[100] Ballé, J.; Laparra, V.; Simoncelli, EP, End-to-end optimized image compression, 5th int. conf. learn. repres., ICLR 2017 (2017)
[101] Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning (2016), Cambridge: MIT Press, Cambridge · Zbl 1373.68009
[102] Malo J, Luque MJ. Colorlab: The Matlab toolbox for colorimetry and color vision. Internet site. 2002. http://isp.uv.es/code/visioncolor/colorlab.html.
[103] Malo J, Gutierrez J. Vistalab: the Matlab toolbox for spatio-temporal vision. Internet site. 1997. http://isp.uv.es/code/visioncolor/vistalab.html.
[104] Simoncelli, E.; Farques, MP, Statistical models for images: compression, restoration and synthesis, IEEE asilomar conf. sign. syst. comp. Asilomar, CA, USA, 673-678 (1998)
[105] Cardoso, J., Dependence, correlation and Gaussianity in independent component analysis, J Mach Learn Res, 4, 1177-1203 (2003) · Zbl 1061.62096
[106] Maloney, L.; Gegenfurtner, KR; Sharpe, LT, Physics-based approaches to modeling surface color perception, 387-422 (1999), Cambridge: Cambridge University Press, Cambridge
[107] Jimenez, S.; Malo, J., The role of spatial information in disentangling the irradiance-reflectance-transmittance ambiguity, IEEE Trans Geosci Remote Sens, 52, 8, 4881-4894 (2014) · doi:10.1109/TGRS.2013.2285731
[108] Simoncelli, EP; Olshausen, BA, Natural image statistics and neural representation, Annu Rev Neurosci, 24, 1, 1193-1216 (2001) · doi:10.1146/annurev.neuro.24.1.1193
[109] Huang, J.; Mumford, D., Statistics of natural images and models, IEEE CVPR, 541-547 (1999)
[110] Malo, J.; Ferri, F.; Albert, J.; Soret, J.; Artigas, JM, The role of perceptual contrast non-linearities in image transform quantization, Image Vis Comput, 18, 3, 233-246 (2000) · doi:10.1016/S0262-8856(99)00010-4
[111] Moorthy, AK; Bovik, AC, Blind image quality assessment: from natural scene statistics to perceptual quality, IEEE Trans Image Process, 20, 12, 3350-3364 (2011) · Zbl 1374.94266 · doi:10.1109/TIP.2011.2147325
[112] Portilla, J.; Strela, V.; Wainwright, M.; Simoncelli, E., Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans Image Process, 12, 11, 1338-1351 (2003) · Zbl 1279.94028 · doi:10.1109/TIP.2003.818640
[113] Sinz, F.; Bethge, M., The student-t mixture as a natural image patch prior with application to image compression, J Mach Learn Res, 15, 2061-2086 (2014) · Zbl 1319.62135
[114] van den Oord, A.; Schrauwen, B., The student-t mixture as a natural image patch prior with application to image compression, J Mach Learn Res, 15, 2061-2086 (2014) · Zbl 1319.62135
[115] Ruderman, D., The statistics of natural images, Netw Comput Neural Syst, 5, 4, 517-548 (1994) · Zbl 0824.92030 · doi:10.1088/0954-898X_5_4_006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.