×

Counting real roots in polynomial-time via Diophantine approximation. (English) Zbl 1537.14081

For a set \(A:=\{ a_1,\ldots ,a_{n+2}\}\subset \mathbb{Z}^n\) of cardinality \(n+2\), with all coordinates of \(a_j\) having absolute value at most \(d\) and the \(a_j\) not all lying in the same affine hyperplane, one sets \(x^{a_j}:=x_1^{a_{1,j}}\cdots x_n^{a_{n,j}}\) and one considers the \(n\) functions \(f_i:=\sum _jc_{i,j}x^{a_j}\in \mathbb{Z}[x_1^{\pm 1},\ldots ,x_n^{\pm 1}]\).
Suppose that \(F:=(f_1,\ldots ,f_n)\) is an \(n\times n\) polynomial system with generic integer coefficients at most \(H\) in absolute value, and \(A\) the union of the sets of exponent vectors of the \(f_i\). The author gives the first algorithm that, for any fixed \(n\), counts exactly the number of real roots of \(F\) in time polynomial in log(d\(H\)). He also discusses a number-theoretic hypothesis that would imply a further speed-up to time polynomial in \(n\) as well.

MSC:

14P99 Real algebraic and real-analytic geometry
11J86 Linear forms in logarithms; Baker’s method
14Q20 Effectivity, complexity and computational aspects of algebraic geometry
65Y20 Complexity and performance of numerical algorithms

References:

[1] Timm Ahrendt, “Fast computations of the exponential function,” in proceedings of STACS ’99 (16th annual conference on Theoretical aspects of computer science), pp. 302-312, Springer-Verlag Berlin, 1999. · Zbl 0934.65022
[2] Josh Alman and Virginia Vassilevska, “A Refined Laser Method and Faster Matrix Multiplication,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 522-539, SIAM, 2021. · Zbl 07788370
[3] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, MIT Press, Cambridge, MA, 1996. · Zbl 0873.11070
[4] Alan Baker, “The Theory of Linear Forms in Logarithms,” in Transcendence Theory: Advances and Applications: proceedings of a conference held at the University of Cambridge, Cambridge, Jan.-Feb., 1976, Academic Press, London, 1977. · Zbl 0361.10028
[5] Alan Baker, “Logarithmic forms and the \(abc\)-conjecture,” Number theory (Eger, 1996), pp. 37-44, de Gruyter, Berlin, 1998. · Zbl 0973.11047
[6] Baker, Alan; Wustholtz, Gisbert, Logarithmic forms and group varieties, J. Reine Angew. Math., 442, 19-62, 1993 · Zbl 0788.11026
[7] Saugata Basu; Richard Pollack; Marie-Françoise Roy, “Computing the dimension of a semi-algebraic set,” reprinted in J. Math. Sci. (N.Y.) 134 (2006), no. 5, pp. 2346-2353.
[8] Algorithms in real algebraic geometry, 2nd edition, Algorithms and Computation in Mathematics, 10, 2006, Berlin: Springer-Verlag, Berlin · Zbl 1102.14041
[9] Basu, Saugata; Roy, Marie-Françoise, Divide and conquer roadmap for algebraic sets, Discrete and Computational Geometry, 52, 278-343, 2014 · Zbl 1329.14109 · doi:10.1007/s00454-014-9610-9
[10] Daniel J. Bates; Jonathan D. Hauenstein; Matthew E. Niemerg; Frank Sottile, “Software for the Gale transform of fewnomial systems and a Descartes rule for fewnomials,” Numer. Algorithms 73 (2016), no. 1, pp. 281-304. · Zbl 1349.14177
[11] Daniel J. Bates, Jon D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Numerically solving polynomial systems with Bertini, Software, Environments, and Tools 25, SIAM, 2013. · Zbl 1295.65057
[12] Ben-Or, Michael; Kozen, Dexter; Reif, John, “The Complexity of Elementary Algebra and Geometry,”, J. Computer and System Sciences, 32, 251-264, 1986 · Zbl 0634.03031 · doi:10.1016/0022-0000(86)90029-2
[13] Daniel J. Bernstein, “Computing Logarithm Intervals with the Arithmetic-Geometric Mean Iterations,” available from http://cr.yp.to/papers.html .
[14] Polynomial Systems with Few Real Zeroes, Mathematisches Zeitschrift, 253, 2, 361-385, 2006 · Zbl 1102.14039 · doi:10.1007/s00209-005-0912-8
[15] Frédéric Bihan, Topologie des variétés creuses, Habilitation thesis, Université de Savoie, France, 2011.
[16] Bihan, Frédéric; Dickenstein, Alicia, Descartes’ Rule of Signs for Polynomial Systems Supported on Circuits, International Mathematics Research Notices, 2017, 22, 6867-6893, 2017 · Zbl 1405.14131
[17] Frédéric Bihan; Alicia Dickenstein; Jens Forsgård, “Optimal Descartes’ rule of signs for systems supported on circuits,” Mathematische Annalen 381 (2021), pp. 1283-1307. · Zbl 1487.14129
[18] Frédéric Bihan; Alicia Dickenstein; and Magalí Giaroli, “Regions of multistationarity in cascades of Goldbeter-Koshland loops,” J. Math. Biol. (2019) Vol. 78(4), pp. 1115-1145. · Zbl 1409.92103
[19] Frédéric Bihan; Alicia Dickenstein; and Magalí Giaroli, “Lower bounds for positive roots and regions of multistationarity in chemical reaction networks,” J. Algebra (2020), Vol. 542, pp. 367-411. · Zbl 1453.92120
[20] Frédéric Bihan; Alicia Dickenstein; and Magalí Giaroli, “Sign conditions for the existence of at least one positive solution of a sparse polynomial system,” Advances in Mathematics, 375, 2 2020. · Zbl 1456.13019
[21] Frédéric Bihan, J. Maurice Rojas, and Frank Sottile, “On the Sharpness of Fewnomial Bounds and the Number of Components of Fewnomial Hypersurfaces,” Algorithms in Algebraic Geometry (Alicia Dickenstein, Frank-Olaf Schreyer, and Andrew J. Sommese, eds.), IMA Volumes in Mathematics and its Applications, Vol. 146, pp. 15-20, Springer-Verlag, 2007. · Zbl 1132.14334
[22] Frédéric Bihan; J. Maurice Rojas; Casey E. Stella, “Faster Real Feasibility via Circuit Discriminants,” proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC 2009, July 28-31, Seoul, Korea), pp. 39-46, ACM Press, 2009. · Zbl 1237.68251
[23] Bihan, Frédéric; Sottile, Frank, New Fewnomial Upper Bounds from Gale Dual Polynomial Systems, Moscow Mathematical Journal, 7, 3, 387-407, 2007 · Zbl 1148.14028 · doi:10.17323/1609-4514-2007-7-3-387-407
[24] Lenore Blum; Felipe Cucker; Mike Shub; and Steve Smale, Complexity and Real Computation, Springer-Verlag, 1998.
[25] Enrico Bombieri and Walter Gubler, Heights in Diophantine Geometry, new mathematical monographs: 4, Cambridge University Press, 2006. · Zbl 1115.11034
[26] Enrico Bombieri; Jean Bourgain; and Sergei Konyagin, “Roots of polynomials in subgroups of \({\mathbb{F}}^*_p\) and applications to congruences,” Int. Math. Res. Not. IMRN 2009, no. 5, pp. 802-834. · Zbl 1213.11058
[27] Erick Boniface, Weixun Deng, and J. Maurice Rojas, “Trinomials and Complexity Limits Over the Reals,” in progress, 2022.
[28] John M. Borwein and Peter B. Borwein; “On the Complexity of Familiar Functions and Numbers,” SIAM Review, Vol. 30, No. 4, (Dec., 1988), pp. 589-601. · Zbl 0686.68029
[29] Brent, Richard P., Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the Association for Computing Machinery, 23, 2, 242-251, 1976 · Zbl 0324.65018 · doi:10.1145/321941.321944
[30] Yan Bugeaud; Maurice Mignotte; and Samir Siksek, “Classical and modular approaches to exponential Diophantine equations, I, Fibonacci and Lucas perfect powers,” Ann. of Math. (2) 163 (2006), pp. 969-1018. · Zbl 1113.11021
[31] Bürgisser, Peter; Ergür, Alperen A.; Tonelli-Cueto, Josué, On the Number of Real Zeros of Random Fewnomials, SIAM Journal on Applied Algebra and Geometry, 3, 4, 721-732, 2019 · Zbl 1441.60014 · doi:10.1137/18M1228682
[32] Ran Canetti; John B. Friedlander; Sergey Konyagin; Michael Larsen; Daniel Lieman; and Igor E. Shparlinski, “On the statistical properties of Diffie-Hellman distributions,” Israel J. Math. 120 (2000), pp. 23-46. · Zbl 0997.11066
[33] John F. Canny, “Some Algebraic and Geometric Computations in PSPACE,” Proc. \(20{\underline{th}}\) ACM Symp. Theory of Computing, Chicago (1988), ACM Press.
[34] Cattani, Eduardo; Dickenstein, Alicia, Counting solutions to binomial complete intersections, Journal of Complexity, 23, 82-107, 2007 · Zbl 1112.13028 · doi:10.1016/j.jco.2006.04.004
[35] Chandrasekaran, Venkat; Shah, Parikshit, Relative Entropy Relaxations for Signomial Optimization, SIAM J. Optim., 26, 2, 1147-1173, 2016 · Zbl 1345.90066 · doi:10.1137/140988978
[36] Chen, Tianran; Li, Tien-Yien, Solutions to Systems of Binomial Equations, Annales Mathematicae Silesianae, 28, 7-34, 2014 · Zbl 1439.13079
[37] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, “Sparse Univariate Polynomials with Many Roots Over a Finite Field,” Finite Fields and their Applications, Vol. 46, July 2017, pp. 235-246. · Zbl 1406.11121
[38] Alexander L. Chistov and Dima Yu Grigoriev, “Complexity of Quantifier Elimination in the Theory of Algebraically Closed Fields,” Lect. Notes Comp. Sci. 176, Springer-Verlag (1984). · Zbl 0562.03015
[39] Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009. · Zbl 1187.68679
[40] Cucker, Felipe; Krick, Teresa; Malajovich, Gregorio; Wschebor, Mario, A numerical algorithm for zero counting. I: Complexity and Accuracy, J. Complexity, 24, 582-605, 2008 · Zbl 1166.65021 · doi:10.1016/j.jco.2008.03.001
[41] Cucker, Felipe; Krick, Teresa; Shub, Michael, Computing the homology of real projective sets, Found. Comput. Math., 18, 929-970, 2018 · Zbl 1506.55014 · doi:10.1007/s10208-017-9358-8
[42] Alicia Dickenstein; Magalí Giaroli; Rick Rischter; Mercedes Pérez Millán, “Parameter regions that give rise to \(2[n/2]+1\) positive steady states in the \(n\)-site phosphorylation system,” Mathematical Biosciences and Engineering, 2019, 16(6):7589-7615. · Zbl 1467.92075
[43] Alicia Dickenstein; Mercedes Pérez Millán; Anne Shiu; and Xiaoxian Tang, “Multistationarity in Structured Reaction Networks,” Bulletin of Mathematical Biology (2019) 81(5), 1527-1581. · Zbl 1415.92083
[44] Mareike Dressler, Adam Kurpisz, and Timo de Wolff, “Optimization over the boolean hypercube via sums of nonnnegative circuit polynomials,” Foundations of Computational Mathmematics, 2021, https://doi.org/10.1007/s10208-021-09496-x .
[45] Duffin, RJ; Schaeffer, AC, A refinement of an inequality of the brothers Markoff, Transactions of the American Mathematical Society, 50, 517-528, 1941 · JFM 67.0213.02 · doi:10.1090/S0002-9947-1941-0005942-4
[46] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer-Verlag, 1995. · Zbl 0819.13001
[47] Ioannis Z. Emiris, MixedVolume-SparseResultants software package, https://github.com/iemiris/MixedVolume-SparseResultants .
[48] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas, “Probabilistic Condition Number Estimates for Real Polynomial Systems I: A Broader Family of Distributions,” Foundations of Computational Mathematics, Feb. 2019, Vol. 19, No. 1, pp. 131-157. · Zbl 1409.65033
[49] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas, “Smoothed analysis for the condition number of structured real polynomial systems,” Math. Comp. 90 (2021), pp. 2161-2184. · Zbl 1482.14062
[50] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas, “Randomized Baker’s Theorem and Real Algebraic Geometry,” preprint, Texas A &M University, 2022.
[51] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, 3rd ed., Cambridge University Press, 2013. · Zbl 1277.68002
[52] Gel’fand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V., Discriminants, 1994, Birkhäuser, Boston: Resultants and Multidimensional Determinants, Birkhäuser, Boston · Zbl 0827.14036 · doi:10.1007/978-0-8176-4771-1_10
[53] David J. Grabiner, “Descartes’ Rule of Signs: Another Construction,” The American Mathematical Monthly, Vol. 106, No. 9 ( 1999), pp. 854-856. · Zbl 0980.12001
[54] Branko Grünbaum, Convex Polytopes, 2nd ed. (prepared by Volker Kaibel, Victor Klee, and Günter Ziegler), Graduate Texts in Mathematics, vol. 221, Springer-Verlag, 2003. · Zbl 1033.52001
[55] Robert M. Hardt, “Semi-Algebraic Local-Triviality in Semi-Algebraic Mappings,” American Journal of Mathematics, Vol. 102, No. 2 (Apr., 1980), pp. 291-302. · Zbl 0465.14012
[56] David Harvey and Joris van der Hoeven, “Integer multiplication in time \(O(n\log n)\),” Annals of Mathematics, Vol. 193, No. 2 (March 2021), pp. 563-617. · Zbl 1480.11162
[57] Hermite, Charles, Sur l’introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math., 41, 191-216, 1851 · ERAM 041.1126cj
[58] Huber, Birkett; Sturmfels, Bernd, A Polyhedral Method for Solving Sparse Polynomial Systems, Math. Comp., 64, 212, 1541-1555, 1995 · Zbl 0849.65030 · doi:10.1090/S0025-5718-1995-1297471-4
[59] Gorav Jindal and Mikael Sagraloff, “Efficiently computing real roots of sparse polynomials,” in: Proceedings of the 2017 ACM ISSAC (International Symposium on Symbolic and Algebraic Computation), ACM, New York. pp. 229-236. doi:10.1145/3087604.3087652 . · Zbl 1462.65053
[60] Kemper, Gregor, A Course in Commutative Algebra, Graduate Texts in Mathematics 256, 2011, Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1210.13001 · doi:10.1007/978-3-642-03545-6
[61] Khovanskiĭ, Askold G., A class of systems of transcendental equations, Dokl. Akad. Nauk SSSR, 255, 4, 804-807, 1980 · Zbl 0569.32004
[62] Askold, G., Khovanskiĭ, 1991, Fewnomials: AMS Press, Providence, Rhode Island, Fewnomials
[63] Pascal Koiran; Natacha Portier; and Sebastian Tavenas, “On the intersection of a sparse curve and a low-degree curve: A polynomial version of the lost theorem,” Discrete and Computational Geometry, 53(1):48-63, 2015. · Zbl 1325.14074
[64] Pascal Koiran; Natacha Portier; and Sebastian Tavenas, “A Wronskian approach to the real tau-conjecture,” Journal of Symbolic Computation, 68(2):195-214, 2015. · Zbl 1302.68331
[65] Koiran, Pascal, Root separation for trinomials, J. Symbolic Comput., 95, 151-161, 2019 · Zbl 1429.30009 · doi:10.1016/j.jsc.2019.02.004
[66] Kronecker, Leopold, Werke, 1895, Leipzig: Teubner, Leipzig · JFM 26.0022.02
[67] Anatoly Georgievich Kushnirenko, “Newton Polytopes and the Bézout Theorem,” Functional Analysis and its Applications (translated from Russian), vol. 10, no. 3, July-September (1977), pp. 233-235. · Zbl 0341.32001
[68] Serge Lang, Elliptic Curves: Diophantine Analysis, Springer, 1978. · Zbl 0388.10001
[69] Tsung-Lin Lee and Tien-Yien Li, “Mixed volume computation in solving polynomial systems,” in Randomization, Relaxation, and Complexity in Polynomial Equation Solving, Contemporary Mathematics, vol. 556, pp. 97-112, AMS Press, 2011. · Zbl 1416.65145
[70] François Legall, “Powers of tensors and fast matrix multiplication,” Proceedings of ISSAC (International Symposium on Symbolic and Algebraic Computation) 2014, ACM Press, pp. 296-303, 2014. · Zbl 1325.65061
[71] Tien-Yien Li; J. Maurice Rojas; and Xiaoshen Wang, “Counting Real Connected Components of Trinomial Curves Intersections and m-nomial Hypersurfaces,” Discrete and Computational Geometry, 30:379-414 (2003). · Zbl 1059.14071
[72] Liouville, Joseph, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible á des irrationnelles algébriques, Journal Math. Pures et Appl., 16, 133-142, 1851
[73] Richard A. Lipton and Richard J. Lipton, “A probabilistic remark on algebraic program testing,” Information Processing Letters 7 (4): 193-195. · Zbl 0397.68011
[74] Mahler, Kurt, An inequality for the discriminant of a polynomial, The Michigan Mathematical Journal, 11, 3, 257-262, 1964 · Zbl 0135.01702 · doi:10.1307/mmj/1028999140
[75] A. A. Markov, “On a certain problem of D. I. Mendeleiff,” (in Russian) Utcheniya Zapiski Imperatorskoi Akademii Nauk, 62, pp. 1-24, 1889.
[76] David W. Masser, “Open Problems,” Prod. Symp. Analytic Number Theory (ed. by W. W. L. Chen), Imperial Coll. London, 1985.
[77] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II”, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), pp. 125-180; English transl. in Izv.l Math. 64 (2000), pp. 1217-1269. · Zbl 1013.11043
[78] Maurice Mignotte, “Some Useful Bounds,” Computing, Suppl. 4, pp. 259-263 (1982), Springer Verlag. · Zbl 0498.12019
[79] Pinaki Mondal, How many zeroes? Counting the number of solutions of systems of polynomials via geometry at infinity, Springer Verlag, 2021. · Zbl 1483.13001
[80] Yuri Nesterenko, “Linear forms in logarithms of rational numbers,” Diophantine approximation (Cetraro, 2000), pp. 53-106, Lecture Notes in Math., 1819, Springer, Berlin, 2003. · Zbl 1044.11069
[81] Abderrahmane Nitaj, The \(abc\) Conjecture Home Page,https://nitaj.users.lmno.cnrs.fr/abc.html
[82] Oesterlé, Joseph, Nouvelles approches du ‘Théorème’ de Fermat, Astérisque, 161-2, 165-186, 1988 · Zbl 0668.10024
[83] Grigoris Paouris, Kaitlyn Phillipson, and J. Maurice Rojas, “A Faster Solution to Smale’s 17th Problem I: Real Binomial Systems,” in proceedings of ISSAC 2019 (July 15-18, 2019, Beihang University, Beijing, China), ACM Press, 2019. · Zbl 1467.65052
[84] Philippe Pébay; J. Maurice Rojas; and David C. Thompson, “Optimization and \({{\textbf{NP}}_{\mathbb{R}}} \)-completeness of certain fewnomials,” proceedings of SNC 2009 (August 3-5, 2009, Kyoto, Japan), pp. 133-142, ACM Press, 2009. · Zbl 1356.65038
[85] Paul Pedersen, Marie-Françoise Roy, and Aviva Szpirglas, “Counting real zeros in the multivariate case,” in proceedings of Computational algebraic geometry (Nice, 1992), pp. 203-224, Progr. Math., 109, Birkhäuser Boston, Boston, MA, 1993. · Zbl 0806.14042
[86] Kaitlyn Phillipson and J. Maurice Rojas, “Fewnomial Systems with Many Roots, and an Adelic Tau Conjecture,” in proceedings of Bellairs workshop on tropical and non-Archimedean geometry (May 6-13, 2011, Barbados), Contemporary Mathematics, vol. 605, pp. 45-71, AMS Press, 2013. · Zbl 1320.13035
[87] Victor V. Prasolov, Problems and Theorems in Linear Algebra, translations of mathematical monographs, vol. 134, AMS Press, 2004.
[88] Qazi Ibadur Rahman and Gerhard Schmeisser, Analytic Theory of Polynomials, London Mathematical Society Monographs 26, Oxford Science Publications, 2002. · Zbl 1072.30006
[89] Jim Renegar, “ On the Computational Complexity and Geometry of the First-Order Theory of the Reals, I-III,” J. Symbolic Comput. 13 (1992), no. 3, pp. 255-352. · Zbl 0798.68073
[90] J. Maurice Rojas, “Solving degenerate sparse polynomial systems faster,” J. Symbolic Comput. 28 (1999), no. 1-2, pp. 155-186. · Zbl 0943.65060
[91] J. Maurice Rojas, “Why Polyhedra Matter in Non-Linear Equation Solving,” Contemporary Mathematics, vol. 334, pp. 293-320, AMS Press, 2003. · Zbl 1073.12007
[92] J. Maurice Rojas and Yinyu Ye, “On Solving Sparse Polynomials in Logarithmic Time,” Journal of Complexity, special issue for the 2002 Foundations of Computation Mathematics (FOCM) meeting, February 2005, pp. 87-110. · Zbl 1101.68610
[93] J. Maurice Rojas and Yuyu Zhu, “Root Repulsion and Faster Solving for Very Sparse Polynomials Over \(p\)-adic Fields,” Journal of Number Theory, Vol. 241, Dec. 2022, pp. 655-699. · Zbl 1498.11241
[94] Rouillier, Fabrice, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Engrg. Comm. Comput., 9, 5, 433-461, 1999 · Zbl 0932.12008 · doi:10.1007/s002000050114
[95] Mohab Safey El Din and Éric Schost, “A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets,” Journal of the ACM, Vol. 63, No. 6, pp. February 2017. · Zbl 1426.68311
[96] Michael Sagraloff, “A General Approach to Isolating Roots of a Bit-stream Polynomial,” Mathematics in Computer Science 4, 481 (2010), Springer-Verlag. · Zbl 1229.65077
[97] Eugene Salamin, “Computation of \(\pi\) using arithmetic-geometric mean,” Math. Comput., 30 (1976), pp. 565-570 · Zbl 0345.10003
[98] Alexander Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1986. · Zbl 0665.90063
[99] Jacob T. Schwartz, “Fast Probabilistic Algorithms for Verification of Polynomial Identities,” J. of the ACM 27, 701-717, 1980. · Zbl 0452.68050
[100] David Eugene Smith and Marcia L. Latham, The Geometry of René Descartes, translated from the French and Latin (with a facsimile of Descartes’ 1637 French edition), Dover Publications Inc., New York (1954). · Zbl 0057.24107
[101] Storjohann, Arne, “Algorithms for Matrix Canonical Forms,” doctoral dissertation, 2000, Zurich: Swiss Federal Institute of Technology, Zurich
[102] Verschelde, Jan, Polynomial Homotopy Continuation with PHCpack, ACM Communications in Computer Algebra, 44, 4, 217-220, 2010 · Zbl 1308.68198
[103] Kunrui Yu, “\(p\)-adic logarithmic forms and group varieties III,” Form Math., Vol. 19, No. 2, pp. 187-280, 2007. · Zbl 1132.11038
[104] Richard Zippel, “Probabilistic algorithms for sparse polynomials,” Symbolic and Algebraic Computation, Lecture Notes in Computer Science 72, pp. 216-226, Springer 1979. · Zbl 0418.68040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.