×

Extremely quick thermalization in a macroscopic quantum system for a typical nonequilibrium subspace. (English) Zbl 1452.82011

Summary: The fact that macroscopic systems approach thermal equilibrium may seem puzzling, for example, because it may seem to conflict with the time-reversibility of the microscopic dynamics. We here prove that in a macroscopic quantum system for a typical choice of ‘nonequilibrium subspace’, any initial state indeed thermalizes, and in fact does so very quickly, on the order of the Boltzmann time \(\tau_{\mathrm B}:=h/(k_{\mathrm B}T)\). Therefore what needs to be explained is, not that macroscopic systems approach thermal equilibrium, but that they do so slowly.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] von Neumann J 1929 Beweis des ergodensatzes und des H-theorems in der neuen mechanik Z. Phys.57 30 · JFM 55.0523.05 · doi:10.1007/BF01339852
[2] von Neumann J 1929 Proof of the ergodic theorem and the H-theorem in quantum mechanics (Engl. transl. by R Tumulka) (arXiv:1003.2133)
[3] Goldstein S, Lebowitz J L, Tumulka R and Zanghì N 2010 Long-time behavior of macroscopic quantum systems Eur. Phys. J. H 35 173-200 · doi:10.1140/epjh/e2010-00007-7
[4] Tasaki H 1998 From quantum dynamics to the canonical distribution: general picture and a rigorous example Phys. Rev. Lett.80 1373-6 · Zbl 0944.82001 · doi:10.1103/PhysRevLett.80.1373
[5] Reimann P 2008 Foundation of statistical mechanics under experimentally realistic conditions Phys. Rev. Lett.101 190403 · doi:10.1103/PhysRevLett.101.190403
[6] Linden N, Popescu S, Short A J and Winter A 2009 Quantum mechanical evolution towards thermal equilibrium Phys. Rev. E 79 061103 · doi:10.1103/PhysRevE.79.061103
[7] Goldstein S, Lebowitz J L, Mastrodonato C, Tumulka R and Zanghì N 2010 On the approach to thermal equilibrium of macroscopic quantum systems Phys. Rev. E 81 011109 · doi:10.1103/PhysRevE.81.011109
[8] Tasaki H 2013 The approach to thermal equilibrium and ‘thermodynamic normality’—an observation based on the works by Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghìin 2009, and by von Neumann in 1929 (arXiv:1003.5424)
[9] Reimann P and Kastner M 2012 Equilibration of isolated macroscopic quantum systems New J. Phys.14 043020 · Zbl 1448.81502 · doi:10.1088/1367-2630/14/4/043020
[10] Reimann P 2012 Equilibration of isolated macroscopic quantum systems under experimentally realistic conditions Phys. Scr.86 058512 · Zbl 1267.82044 · doi:10.1088/0031-8949/86/05/058512
[11] Sato J, Kanamoto R, Kaminishi E and Deguchi T 2012 Exact relaxation dynamics of a localized many-body state in the 1D Bose gas Phys. Rev. Lett.108 110401 · doi:10.1103/PhysRevLett.108.110401
[12] Popescu S, Short A J and Winter A 2006 Entanglement and the foundation of statistical mechanics Nat. Phys.2 754-8 · doi:10.1038/nphys444
[13] Goldstein S, Lebowitz J L, Tumulka R and Zanghì N 2006 Canonical typicality Phys. Rev. Lett.96 050403 · doi:10.1103/PhysRevLett.96.050403
[14] Sugita A 2007 On the basis of quantum statistical mechanics Nonlinear Phenom. Complex Syst.10 192-5
[15] Sugiura S and Shimizu A 2012 Thermal pure quantum states at finite temperature Phys. Rev. Lett.108 240401 · doi:10.1103/PhysRevLett.108.240401
[16] Sugiura S and Shimizu A 2013 Canonical thermal pure quantum state Phys. Rev. Lett111 010401 · doi:10.1103/PhysRevLett.111.010401
[17] Goldstein S, Hara T and Tasaki H 2013 Time scales in the approach to equilibrium of macroscopic quantum systems Phys. Rev. Lett.111 140401 · doi:10.1103/PhysRevLett.111.140401
[18] Goldstein S, Hara T and Tasaki H 2014 The approach to equilibrium in a macroscopic quantum system for a typical nonequilibrium subspace (arXiv:1402.3380)
[19] Vinayak and Znidaric M 2012 Subsystem dynamics under random Hamiltonian evolution J. Phys. A: Math. Theor.45 125204 · Zbl 1245.81065 · doi:10.1088/1751-8113/45/12/125204
[20] Masanes L, Roncaglia A J and Acin A 2013 The complexity of energy eigenstates as a mechanism for equilibration Phys. Rev. E 87 032137 · doi:10.1103/PhysRevE.87.032137
[21] Brandão F G S L, Ćwikliński P, Horodecki M, Horodecki P, Korbicz J and Mozrzymas M 2012 Convergence to equilibrium under a random Hamiltonian Phys. Rev. E 86 031101 · doi:10.1103/PhysRevE.86.031101
[22] Cramer M 2012 Thermalization under randomized local Hamiltonians New J. Phys.14 053051 · Zbl 1448.81100 · doi:10.1088/1367-2630/14/5/053051
[23] Malabarba A S L, García-Pintos L P, Linden N, Farrelly T C and Short A J 2014 Quantum systems equilibrate rapidly for most observables Phys. Rev. E 90 012121 · doi:10.1103/PhysRevE.90.012121
[24] Monnai T 2014 General relaxation time of the fidelity for isolated quantum thermodynamic systems J. Phys. Soc. Japan83 064001 · doi:10.7566/JPSJ.83.064001
[25] Ruelle D 1999 Statistical Mechanics: Rigorous Results (Singapore: World Scientific) · Zbl 1016.82500 · doi:10.1142/4090
[26] Weingarten D 1978 Asymptotic behavior of group integrals in the limit of infinite rank J. Math. Phys.19 999-1001 · Zbl 0388.28013 · doi:10.1063/1.523807
[27] Collins B 2003 Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability Int. Math. Res. Not.17 953-82 · Zbl 1049.60091 · doi:10.1155/S107379280320917X
[28] Collins B and Śniady P 2006 Integration with respect to the haar measure on unitary, orthogonal and symplectic group Commun. Math. Phys.264 773-95 · Zbl 1108.60004 · doi:10.1007/s00220-006-1554-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.