×

Optimal transport maps on Alexandrov spaces revisited. (English) Zbl 1503.49037

The authors study the optimal transport problem in the setting of metric measure spaces under some curvature assumptions. The space is assumed to be Alexandrov with curvature bounded from below, i.e. its curvature is defined through a comparison between the distances in geodesic triangles with distances in a corresponding model space. Alexandrov spaces have a well-defined dimension which is either an integer or is infinite; in this paper, it is assumed to be finite and equal to \(n\). In this setting, the authors study the Monge formulation of the optimal transport problem; if the source measure is purely \((n-1)\)-unrectifiable, or in other words it does not concentrate on sets of codimension one, they prove that the solution to the Kantorovich problem is unique and it is induced by a map. Note that this is the same condition which appears in similar results on Riemannian manifolds. The proof is based on the nonbranching property for geodesics in Alexandrov spaces.

MSC:

49Q22 Optimal transportation
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C22 Geodesics in global differential geometry

References:

[1] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Am. Math. Soc., 367, 7, 4661-4701 (2015) · Zbl 1317.53060 · doi:10.1090/S0002-9947-2015-06111-X
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 7, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[4] Ambrosio, Luigi, Mondino, Andrea, Savaré, Giuseppe: Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Amer. Math. Soc. 262 (2019), no.1270, v+121 · Zbl 1477.49003
[5] Ambrosio, L.; Rajala, T., Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces, Ann. Mat. Pura Appl. (4), 193, 1, 71-87 (2014) · Zbl 1283.49055 · doi:10.1007/s10231-012-0266-x
[6] Bertrand, J., Existence and uniqueness of optimal maps on Alexandrov spaces, Adv. Math., 219, 3, 838-851 (2008) · Zbl 1149.49002 · doi:10.1016/j.aim.2008.06.008
[7] Bertrand, J.: Alexandrov, Kantorovitch et quelques autres. Exemples d’interactions entre transport optimal et géométrie d’Alexandrov, Manuscrit présenté pour l’obtention de l’Habilitation à Diriger des Recherches (2015)
[8] Bianchini, S.; Cavalletti, F., The Monge problem for distance cost in geodesic spaces, Commun. Math. Phys., 318, 3, 615-673 (2013) · Zbl 1275.49080 · doi:10.1007/s00220-013-1663-8
[9] Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., 44, 4, 375-417 (1991) · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[10] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001) · Zbl 0981.51016
[11] Burago, Y., Gromov, M., Perel’man, G.: A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47, no. 2 (284), 3-51, 222 (1992) · Zbl 0802.53018
[12] Cavalletti, F.; Huesmann, M., Existence and uniqueness of optimal transport maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 6, 1367-1377 (2015) · Zbl 1331.49063 · doi:10.1016/j.anihpc.2014.09.006
[13] Cavalletti, F.; Mondino, A., Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., 19, 6, 1750007 (2017) · Zbl 1376.53064 · doi:10.1142/S0219199717500079
[14] Champion, T.; De Pascale, L., The Monge problem in \(\mathbb{R}^d\), Duke Math. J., 157, 3, 551-572 (2011) · Zbl 1232.49050 · doi:10.1215/00127094-1272939
[15] Champion, T.; De Pascale, L., On the twist condition and \(c\)-monotone transport plans, Discrete Contin. Dyn. Syst., 34, 4, 1339-1353 (2014) · Zbl 1275.49082 · doi:10.3934/dcds.2014.34.1339
[16] Champion, T.; De Pascale, L.; Juutinen, P., The \(\infty \)-Wasserstein distance: local solutions and existence of optimal transport maps, SIAM J. Math. Anal., 40, 1, 1-20 (2008) · Zbl 1158.49043 · doi:10.1137/07069938X
[17] De Pascale, L., Rigot, S.: Monge’s transport problem in the Heisenberg group. Adv. Calc. Var. 4(2), 195-227 (2011) · Zbl 1216.49039
[18] Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993-1071 (2015) · Zbl 1329.53059
[19] Galaz-García, F.; Kell, M.; Mondino, A.; Sosa, G., On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal., 275, 6, 1368-1446 (2018) · Zbl 1396.58013 · doi:10.1016/j.jfa.2018.06.002
[20] Gangbo, W.; McCann, RJ, The geometry of optimal transportation, Acta Math., 177, 2, 113-161 (1996) · Zbl 0887.49017 · doi:10.1007/BF02392620
[21] Gigli, N., On the inverse implication of Brenier-McCann theorems and the structure of \((\cal{P}_2(M), W_2)\), Methods Appl. Anal., 18, 2, 127-158 (2011) · Zbl 1284.49050 · doi:10.4310/MAA.2011.v18.n2.a1
[22] Gigli, N., Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22, 4, 990-999 (2012) · Zbl 1257.53055 · doi:10.1007/s00039-012-0176-5
[23] Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., 236, 1113, vi+91 (2015) · Zbl 1325.53054
[24] Gigli, N.; Rajala, T.; Sturm, K-T, Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below, J. Geom. Anal., 26, 4, 2914-2929 (2016) · Zbl 1361.53036 · doi:10.1007/s12220-015-9654-y
[25] Jylhä, H., The \(L^\infty\) optimal transport: infinite cyclical monotonicity and the existence of optimal transport maps, Calc. Var. Partial Differ. Equ., 52, 1-2, 303-326 (2015) · Zbl 1306.49062 · doi:10.1007/s00526-014-0713-1
[26] Kantorovich, L., On a problem of monge (in russian), Uspekhi Mat. Nauk., 3, 225-226 (1948)
[27] Kantorovitch, L., On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.), 37, 199-201 (1942) · Zbl 0061.09705
[28] Kechris, SA, Classical Descriptive Set Theory (1995), New York: Springer-Verlag, New York · Zbl 0819.04002 · doi:10.1007/978-1-4612-4190-4
[29] Kell, M., Transport maps, non-branching sets of geodesics and measure rigidity, Adv. Math., 320, 520-573 (2017) · Zbl 1400.49054 · doi:10.1016/j.aim.2017.09.003
[30] Ketterer, C.; Rajala, T., Failure of topological rigidity results for the measure contraction property, Potential Anal., 42, 3, 645-655 (2015) · Zbl 1321.53045 · doi:10.1007/s11118-014-9450-5
[31] Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differ. Equ., 28, 1, 85-120 (2007) · Zbl 1132.60004 · doi:10.1007/s00526-006-0032-2
[32] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2), 169, 3, 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[33] McCann, RJ, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11, 3, 589-608 (2001) · Zbl 1011.58009 · doi:10.1007/PL00001679
[34] Monge, G.: Mémoire sur la théorie des déblais et remblais, Histoire de l’Académie Royale des Sciences de Paris (1781), 666-704
[35] Ohta, S., On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82, 4, 805-828 (2007) · Zbl 1176.28016 · doi:10.4171/CMH/110
[36] Otsu, Y.; Shioya, T., The Riemannian structure of Alexandrov spaces, J. Differ. Geom., 39, 3, 629-658 (1994) · Zbl 0808.53061
[37] Petrunin, A., Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4, 53-64 (2011) · Zbl 1247.53038
[38] Pratelli, A., On the sufficiency of \(c\)-cyclical monotonicity for optimality of transport plans, Math. Z., 258, 3, 677-690 (2008) · Zbl 1293.49110 · doi:10.1007/s00209-007-0191-7
[39] Rajala, T.; Sturm, K-T, Non-branching geodesics and optimal maps in strong \(CD(K,\infty )\)-spaces, Calc. Var. Partial Differ. Equ., 50, 3-4, 831-846 (2014) · Zbl 1296.53088 · doi:10.1007/s00526-013-0657-x
[40] Schultz, T.: Existence of optimal transport maps in very strict \(CD(K,\infty )\)-spaces. Calc. Var. Partial Differ. Equ. 57(5), Paper No. 139, 11 (2018) · Zbl 1401.49069
[41] Shiohama, K.: An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, vol. 8. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1993) · Zbl 0826.53001
[42] Smith, CS; Knott, M., Note on the optimal transportation of distributions, J. Optim. Theory Appl., 52, 2, 323-329 (1987) · Zbl 0586.49005 · doi:10.1007/BF00941290
[43] Sturm, K-T, On the geometry of metric measure spaces, I, Acta Math., 196, 1, 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[44] Sturm, K-T, On the geometry of metric measure spaces, II, Acta Math., 196, 1, 133-177 (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[45] Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, Old and new (2009) · Zbl 1156.53003
[46] Zajíček, L., On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolinae, 19, 1, 179-189 (1978) · Zbl 0404.47025
[47] Zajíček, Luděk: On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29(104) (1979), no. 3, 340-348 · Zbl 0429.46007
[48] Zarantonello, EH, Dense single-valuedness of monotone operators, Israel J. Math., 15, 158-166 (1973) · Zbl 0274.47028 · doi:10.1007/BF02764602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.