×

The Monge problem in \(\mathbb R^d\). (English) Zbl 1232.49050

Summary: We first consider the Monge problem in a convex bounded subset of \({\mathbb R}^d\). The cost is given by a general norm, and we prove the existence of an optimal transport map under the classical assumption that the first marginal is absolutely continuous with respect to the Lebesgue measure. In the final part of the paper we show how to extend this existence result to a general open subset of \({\mathbb R}^d\).

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
49J45 Methods involving semicontinuity and convergence; relaxation
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
93E20 Optimal stochastic control
Full Text: DOI

References:

[1] L. Ambrosio, “ Lecture notes on optimal transportation problems” in Mathematical Aspects of Evolving Interfaces (Funchal, Portugal, 2000) , Lecture Notes in Math. 1812 , Springer, Berlin, 2003, 1-52. · Zbl 1047.35001
[2] L. Ambrosio, B. Kirchheim, and A. Pratelli, Existence of optimal transport maps for crystalline norms , Duke Math. J. 125 (2004), 207-241. · Zbl 1076.49022 · doi:10.1215/S0012-7094-04-12521-7
[3] L. Ambrosio and A. Pratelli, “ Existence and stability results in the \(L^ 1\) theory of optimal transportation” in Optimal Transportation and Applications (Martina Franca, Italy, 2001) , Lecture Notes in Math. 1813 , Springer, Berlin, 2003, 123-160. · Zbl 1065.49026
[4] G. Anzellotti and S. Baldo, Asymptotic development by \(\Gamma\)-convergence , Appl. Math. Optim. 27 (1993), 105-123. · Zbl 0780.49011 · doi:10.1007/BF01195977
[5] H. Attouch, Viscosity solutions of minimization problems , SIAM J. Optim. 6 (1996), 769-806. · Zbl 0859.65065 · doi:10.1137/S1052623493259616
[6] L. A. Caffarelli, M. Feldman, and R. J. Mccann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs , J. Amer. Math. Soc. 15 (2002), 1-26. JSTOR: · Zbl 1053.49032 · doi:10.1090/S0894-0347-01-00376-9
[7] L. Caravenna, A proof of Sudakov theorem with strictly convex norms, Math. Zeitschift (2010), DOI 10.1007/S00209-010-0677-6 · Zbl 1229.49050
[8] T. Champion and L. De Pascale, The Monge problem for strictly convex norms in \(\R^d\) , J. Eur. Math. Soc. 12 (2010), 1355-1369. · Zbl 1207.49053 · doi:10.4171/JEMS/234
[9] T. Champion, L. De Pascale, and P. Juutinen, The \(\infty\)-Wasserstein distance: Local solutions and existence of optimal transport maps , SIAM J. Math. Anal. 40 (2008), 1-20. · Zbl 1158.49043 · doi:10.1137/07069938X
[10] L. De Pascale, L. C. Evans, and A. Pratelli, Integral estimates for transport densities , Bull. London Math. Soc. 36 (2004), 383-396. · Zbl 1068.35170 · doi:10.1112/S0024609303003035
[11] L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem , Calc. Var. Partial Differential Equations 14 (2002), 249-274. · Zbl 1032.49043 · doi:10.1007/s005260100086
[12] -, Sharp summability for Monge transport density via interpolation , ESAIM Control Optim. Calc. Var. 10 (2004), 549-552. · Zbl 1072.49033 · doi:10.1051/cocv:2004019
[13] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem , Mem. Amer. Math. Soc. 137 (1999), no. 653. · Zbl 0920.49004
[14] L.V. Kantorovich, On the translocation of masses , C.R. (Dokl.) Acad. Sci. URSS 37 (1942), 199-201. · Zbl 0061.09705
[15] -, On a problem of Monge , C. R. (Dokl.) Acad. Sci. URSS (N.S.) 3 (1948), 225-226; English translation in J. Math. Sci. (N.Y.) 133 (2006), 1383.
[16] G. Monge, Mémoire sur la théorie des Déblais et des Remblais , Histoire de l’Académie des Sciences de Paris, 1781.
[17] A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum in mass transportation , Ann. Inst. H. Poincaré Probab. Statist 43 (2007), 1-13. · Zbl 1121.49036 · doi:10.1016/j.anihpb.2005.12.001
[18] F. Santambrogio, Absolute continuity and summability of transport densities: Simpler proofs and new estimates Calc. Var. Partial Differential Equations 36 (2009), 343-354. · Zbl 1180.49014 · doi:10.1007/s00526-009-0231-8
[19] V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, cover-to-cover translation of Trudy Mat. Inst. Steklov 141 (1976), Proc. Steklov Inst. Math. (1979), no. 2, 1-178. · Zbl 0409.60005
[20] N. S. Trudinger and X.-J. Wang, On the Monge mass transfer problem , Calc. Var. Partial Differential Equations 13 (2001), 19-31. · Zbl 1010.49030 · doi:10.1007/s005260000063
[21] C. Villani, Topics in optimal transportation , Grad. Stud. Math. 58 , Amer. Math. Soc., Providence, 2003. · Zbl 1106.90001
[22] -, Optimal Transport, Old and New , Grundlehren Math. Wiss. 338 , Springer, Berlin, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.