×

Multiscale analysis of 1-rectifiable measures. II: Characterizations. (English) Zbl 1360.28004

Summary: A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures \(\mu\) in \(n\)-dimensional Euclidean space for all \(n\geq 2\) in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an \(L^2\) gauge the extent to which \(\mu\) admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical theorems of Besicovitch, Morse and Randolph, and Moore, we do not assume an a priori relationship between \(\mu\) and 1-dimensional Hausdorff measure \(\mathcal H^1\). We also characterize purely 1-unrectifiable Radon measures, i.e. locally finite measures that give measure zero to every finite length curve. Characterizations of this form were originally conjectured to exist by P. Jones. Along the way, we develop an \(L^2\) variant of P. Jones’ traveling salesman construction, which is of independent interest.
For Part I, cf. [the authors, Math. Ann. 361, No. 3–4, 1055–1072 (2015; Zbl 1314.28003)].

MSC:

28A75 Length, area, volume, other geometric measure theory
26A16 Lipschitz (Hölder) classes
42B99 Harmonic analysis in several variables
54F50 Topological spaces of dimension \(\leq 1\); curves, dendrites

Citations:

Zbl 1314.28003

References:

[1] L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318(3):527-555, 2000.; · Zbl 0966.28002
[2] J. Azzam, G. David, and T. Toro. Wasserstein distance and the rectifiability of doubling measures: part I. Math. Ann., 364(1- 2):151-224, 2016.; · Zbl 1334.28004
[3] J. Azzam and M. Mourgoglou. A characterization of 1-rectifiable doubling measures with connected supports. Anal. PDE, 9(1):99-109, 2016.; · Zbl 1332.28007
[4] J. Azzam and X. Tolsa. Characterization of n-rectifiability in terms of Jones’ square function: Part II. Geom. Funct. Anal., 25(5):1371-1412, 2015.; · Zbl 1334.28010
[5] M. Badger and R. Schul. Multiscale analysis of 1-rectifiable measures: necessary conditions. Math. Ann., 361(3-4):1055-1072, 2015.; · Zbl 1314.28003
[6] M. Badger and R. Schul. Two suficient conditions for rectifiable measures. Proc. Amer.Math. Soc., 144(6):2445-2454, 2016.; · Zbl 1345.28004
[7] D. Bate. Structure of measures in Lipschitz difierentiability spaces. J. Amer. Math. Soc., 28(2):421-482, 2015.; · Zbl 1307.30097
[8] D. Bate and S. Li. Characterizations of rectifiable metric measure spaces. preprint, arXiv:1409.4242, to appear in Ann. Sci. Éc. Norm. Supèr., 2014.; · Zbl 1369.28002
[9] G. Beer. Topologies on closed and closed convex sets, volume 268 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.; · Zbl 0792.54008
[10] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points. Math. Ann., 98(1):422-464, 1928.; · JFM 53.0175.04
[11] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points (II). Math. Ann., 115(1):296-329, 1938.; · Zbl 0018.11302
[12] V. Chousionis and J. T. Tyson. Marstrand’s density theorem in the Heisenberg group. Bull. Lond. Math. Soc., 47(5):771-788, 2015.; · Zbl 1331.28014
[13] G. David and S. Semmes. Singular integrals and rectifiable sets in Rn: Beyond Lipschitz graphs. Astérisque, (193):152, 1991.; · Zbl 0743.49018
[14] G. David and S. Semmes. Analysis of and on uniformly rectifiable sets, volume 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1993.; · Zbl 0832.42008
[15] G. David and T. Toro. Reifenberg parameterizations for sets with holes. Mem. Amer. Math. Soc., 215(1012):vi+102, 2012.; · Zbl 1236.28002
[16] G. C. David and R. Schul. The Analyst’s traveling salesman theorem in graph inverse limits. preprint, 2016.; · Zbl 1376.28003
[17] C. De Lellis. Recti_able sets, densities and tangent measures. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.; · Zbl 1183.28006
[18] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.; · Zbl 1310.28001
[19] K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986.; · Zbl 0587.28004
[20] H. Federer. The (’, k) rectifiable subsets of n-space. Trans. Amer. Soc., 62:114-192, 1947.; · Zbl 0032.14902
[21] H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.; · Zbl 0176.00801
[22] F. Ferrari, B. Franchi, and H. Pajot. The geometric traveling salesman problem in the Heisenberg group. Rev. Mat. Iberoam., 23(2):437-480, 2007.; · Zbl 1142.28004
[23] J. Garnett, R. Killip, and R. Schul. A doubling measure on Rd can charge a rectifiable curve. Proc. Amer. Math. Soc., 138(5):1673-1679, 2010.; · Zbl 1196.28007
[24] I. Hahlomaa. Menger curvature and rectifiability in metric spaces. Adv. Math., 219(6):1894-1915, 2008.; · Zbl 1153.28002
[25] P. Hajłasz and S. Malekzadeh. On conditions for unrectifiability of a metric space. Anal. Geom. Metr. Spaces, 3:1-14, 2015.; · Zbl 1321.28008
[26] P.W. Jones. Square functions, Cauchy integrals, analytic capacity, and harmonic measure. In Harmonic analysis and partial differential equations (El Escorial, 1987), volume 1384 of Lecture Notes in Math., pages 24-68. Springer, Berlin, 1989.; · Zbl 0675.30029
[27] P. W. Jones. Rectifiable sets and the traveling salesman problem. Invent. Math., 102(1):1-15, 1990.; · Zbl 0731.30018
[28] P. W. Jones, G. Lerman, and R. Schul. The Analyst’s traveling bandit problem in Hilbert space. in preparation.;
[29] N. Juillet. A counterexample for the geometric traveling salesman problem in the Heisenberg group. Rev. Mat. Iberoam., 26(3):1035-1056, 2010.; · Zbl 1206.28003
[30] B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc., 121(1):113-123, 1994.; · Zbl 0806.28004
[31] O. Kowalski and D. Preiss. Besicovitch-type properties of measures and submanifolds. J. Reine Angew. Math., 379:115-151, 1987.; · Zbl 0618.53006
[32] J. C. Léger. Menger curvature and rectifiability. Ann. of Math. (2), 149(3):831-869, 1999.; · Zbl 0966.28003
[33] G. Lerman. Quantifying curvelike structures of measures by using L2 Jones quantities. Comm. Pure Appl.Math., 56(9):1294- 1365, 2003.; · Zbl 1076.28005
[34] G. Lerman and J. T. Whitehouse. High-dimensional Menger-type curvatures. Part I: Geometric multipoles and multiscale inequalities. Rev. Mat. Iberoam., 27(2):493-555, 2011.; · Zbl 1232.28007
[35] S. Li and R. Schul. An upper bound for the length of a traveling salesman path in the Heisenberg group. Rev. Mat. Iberoam. 32(2):391-417, 2016.; · Zbl 1355.28005
[36] S. Li and R. Schul. The traveling salesman problem in the Heisenberg group: Upper bounding curvature. Trans. Amer.Math. Soc., 368(7):4585-4620, 2016.; · Zbl 1350.53044
[37] A. Lorent. Rectifiability of measures with locally uniform cube density. Proc. London Math. Soc. (3), 86(1):153-249, 2003.; · Zbl 1042.28002
[38] A. Lorent. A Marstrand type theorem for measures with cube density in general dimension. Math. Proc. Cambridge Philos. Soc., 137(3):657-696, 2004.; · Zbl 1109.28008
[39] J. M. Marstrand. Hausdorff two-dimensional measure in 3-space. Proc. London Math. Soc. (3), 11:91-108, 1961.; · Zbl 0109.03504
[40] J. M. Marstrand. The (’, s) regular subsets of n-space. Trans. Amer. Math. Soc., 113:369-392, 1964.; · Zbl 0144.04902
[41] H.Martikainen and T. Orponen. Boundedness of the density normalised Jones’ square function does not imply 1-rectifiability. preprint, arXiv:1605.04091, 2016.; · Zbl 1381.28006
[42] P. Mattila. Hausdorff m regular and rectifiable sets in n-space. Trans. Amer. Math. Soc., 205:263-274, 1975.; · Zbl 0274.28004
[43] P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.; · Zbl 0819.28004
[44] E. F. Moore. Density ratios and (Φ, 1) recti_ability in n-space. Trans. Amer. Math. Soc., 69:324-334, 1950.; · Zbl 0040.25003
[45] A. P. Morse and J. F. Randolph. The Φ rectifiable subsets of the plane. Trans. Amer. Math. Soc., 55:236-305, 1944.; · Zbl 0060.14002
[46] A. Naber and D. Valtorta. Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Of Math. (2), 185(1):131-227, 2017.; · Zbl 1393.58009
[47] A. D. Nimer. A sharp bound on the Hausdorff dimension of the singular set of an n-uniform measure. preprint, arXiv:1510.03732, 2015.; · Zbl 1379.28002
[48] A. D. Nimer. Conical 3-uniform measures: characterizations & new examples. preprint, arXiv:1608.02604, 2016.; · Zbl 1510.28003
[49] K. Okikiolu. Characterization of subsets of rectifiable curves in Rn. J. London Math. Soc. (2), 46(2):336-348, 1992.; · Zbl 0758.57020
[50] H. Pajot. Conditions quantitatives de rectifiabilité. Bull. Soc. Math. France, 125(1):15-53, 1997.; · Zbl 0890.28004
[51] H. Pajot. Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, volume 1799 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.; · Zbl 1043.28002
[52] D. Preiss. Geometry of measures in Rn: distribution, rectifiability, and densities. Ann. of Math. (2), 125(3):537-643, 1987.; · Zbl 0627.28008
[53] D. Preiss and J. Tišer. On Besicovitch’s 1 2 -problem. J. London Math. Soc. (2), 45(2):279-287, 1992.; · Zbl 0762.28003
[54] C. A. Rogers. Hausdorff measures. CambridgeMathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1970 original, With a foreword by K. J. Falconer.; · Zbl 0915.28002
[55] R. Schul. Subsets of rectifiable curves in Hilbert space-the analyst’s TSP. J. Anal. Math., 103:331-375, 2007.; · Zbl 1152.28006
[56] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.; · Zbl 0207.13501
[57] X. Tolsa. Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory, volume307 of Progress in Mathematics. Birkhäuser/Springer, Cham, 2014.; · Zbl 1290.42002
[58] X. Tolsa. Characterization of n-rectifiability in terms of Jones’ square function: part I. Calc. Var. Partial Differential Equations, 54(4):3643-3665, 2015.; · Zbl 1416.42014
[59] X. Tolsa. Uniform measures and uniform rectifiability. J. Lond. Math. Soc. (2), 92(1):1-18, 2015.; · Zbl 1327.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.