×

A game theoretic approach to study the quantum key distribution BB84 protocol. (English) Zbl 1223.81088

Summary: Quantum cryptography uses quantum mechanics to guarantee secure communication. BB84 is a widely used quantum key distribution that provides a way for two parties, a sender, Alice, and a receiver, Bob, to share an unconditionally secure key in the presence of an eavesdropper, Eve.
Three different criteria can be assumed to study the BB84 protocol. They are the efficiency of the protocol, the probability that Eve remains undetected, and the amount of knowledge Eve has about Alice’s bit sequence.
In a previous approach, we only considered the probability that Eve remains undetected. We viewed this protocol as a three player static game in which Alice and Bob were two cooperative players and Eve was a competitive one. In our game model, Alice’s and Bob’s objective was to maximize the probability of detecting Eve, while Eve’s objective was to minimize this probability. In this paper, our previous effort is extended and we also consider the other two criteria, i.e. the efficiency of the protocol and the amount of knowledge Eve has about Alice’s bit sequence. Using these models, we show how game theory can be used to find the strategies for Alice, Bob and Eve.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
91A80 Applications of game theory
94A60 Cryptography
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevA.73.012337 · doi:10.1103/PhysRevA.73.012337
[2] DOI: 10.1007/s00145-004-0142-y · Zbl 1084.68047 · doi:10.1007/s00145-004-0142-y
[3] DOI: 10.1103/PhysRevLett.85.5635 · doi:10.1103/PhysRevLett.85.5635
[4] DOI: 10.1103/PhysRevA.78.032314 · doi:10.1103/PhysRevA.78.032314
[5] DOI: 10.1103/PhysRevLett.83.3077 · Zbl 0946.81018 · doi:10.1103/PhysRevLett.83.3077
[6] DOI: 10.1016/S0375-9601(00)00441-2 · Zbl 1115.81312 · doi:10.1016/S0375-9601(00)00441-2
[7] DOI: 10.1023/A:1025443111388 · Zbl 1037.81020 · doi:10.1023/A:1025443111388
[8] DOI: 10.1088/0305-4470/38/2/011 · Zbl 1065.81524 · doi:10.1088/0305-4470/38/2/011
[9] DOI: 10.1088/1751-8113/41/5/055307 · Zbl 1134.81341 · doi:10.1088/1751-8113/41/5/055307
[10] DOI: 10.1088/0256-307X/27/8/080302 · doi:10.1088/0256-307X/27/8/080302
[11] Osborne M. J., An Introduction to Game Theory (2003)
[12] Osborne M. J., A Course in Game Theory (1994) · Zbl 1194.91003
[13] Gibbons R., A Primer in Game Theory (1992)
[14] Webb J. N., Game Theory, Decisions, Interactions and Evolution (2006)
[15] Neumann J. V., Theory of Games and Economic Behavior (1944) · Zbl 0063.05930
[16] DOI: 10.1073/pnas.36.1.48 · Zbl 0036.01104 · doi:10.1073/pnas.36.1.48
[17] DOI: 10.2307/1969529 · Zbl 0045.08202 · doi:10.2307/1969529
[18] Nielsen M. A., Quantum Computation and Quantum Information (2001)
[19] DOI: 10.1142/9789812794796 · doi:10.1142/9789812794796
[20] DOI: 10.1201/9781420012293 · Zbl 1185.81004 · doi:10.1201/9781420012293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.